Metamath Proof Explorer


Theorem monoord2xr

Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022)

Ref Expression
Hypotheses monoord2xr.p k φ
monoord2xr.k _ k F
monoord2xr.n φ N M
monoord2xr.x φ k M N F k *
monoord2xr.l φ k M N 1 F k + 1 F k
Assertion monoord2xr φ F N F M

Proof

Step Hyp Ref Expression
1 monoord2xr.p k φ
2 monoord2xr.k _ k F
3 monoord2xr.n φ N M
4 monoord2xr.x φ k M N F k *
5 monoord2xr.l φ k M N 1 F k + 1 F k
6 nfv k j M N
7 1 6 nfan k φ j M N
8 nfcv _ k j
9 2 8 nffv _ k F j
10 nfcv _ k *
11 9 10 nfel k F j *
12 7 11 nfim k φ j M N F j *
13 eleq1w k = j k M N j M N
14 13 anbi2d k = j φ k M N φ j M N
15 fveq2 k = j F k = F j
16 15 eleq1d k = j F k * F j *
17 14 16 imbi12d k = j φ k M N F k * φ j M N F j *
18 12 17 4 chvarfv φ j M N F j *
19 nfv k j M N 1
20 1 19 nfan k φ j M N 1
21 nfcv _ k j + 1
22 2 21 nffv _ k F j + 1
23 nfcv _ k
24 22 23 9 nfbr k F j + 1 F j
25 20 24 nfim k φ j M N 1 F j + 1 F j
26 eleq1w k = j k M N 1 j M N 1
27 26 anbi2d k = j φ k M N 1 φ j M N 1
28 fvoveq1 k = j F k + 1 = F j + 1
29 28 15 breq12d k = j F k + 1 F k F j + 1 F j
30 27 29 imbi12d k = j φ k M N 1 F k + 1 F k φ j M N 1 F j + 1 F j
31 25 30 5 chvarfv φ j M N 1 F j + 1 F j
32 3 18 31 monoord2xrv φ F N F M