Metamath Proof Explorer


Theorem monoord2xrv

Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022)

Ref Expression
Hypotheses monoord2xrv.n φ N M
monoord2xrv.x φ k M N F k *
monoord2xrv.l φ k M N 1 F k + 1 F k
Assertion monoord2xrv φ F N F M

Proof

Step Hyp Ref Expression
1 monoord2xrv.n φ N M
2 monoord2xrv.x φ k M N F k *
3 monoord2xrv.l φ k M N 1 F k + 1 F k
4 2 xnegcld φ k M N F k *
5 4 fmpttd φ k M N F k : M N *
6 5 ffvelrnda φ n M N k M N F k n *
7 3 ralrimiva φ k M N 1 F k + 1 F k
8 fvoveq1 k = n F k + 1 = F n + 1
9 fveq2 k = n F k = F n
10 8 9 breq12d k = n F k + 1 F k F n + 1 F n
11 10 cbvralvw k M N 1 F k + 1 F k n M N 1 F n + 1 F n
12 7 11 sylib φ n M N 1 F n + 1 F n
13 12 r19.21bi φ n M N 1 F n + 1 F n
14 fzp1elp1 n M N 1 n + 1 M N - 1 + 1
15 14 adantl φ n M N 1 n + 1 M N - 1 + 1
16 eluzelz N M N
17 1 16 syl φ N
18 17 zcnd φ N
19 ax-1cn 1
20 npcan N 1 N - 1 + 1 = N
21 18 19 20 sylancl φ N - 1 + 1 = N
22 21 oveq2d φ M N - 1 + 1 = M N
23 22 adantr φ n M N 1 M N - 1 + 1 = M N
24 15 23 eleqtrd φ n M N 1 n + 1 M N
25 2 ralrimiva φ k M N F k *
26 25 adantr φ n M N 1 k M N F k *
27 fveq2 k = n + 1 F k = F n + 1
28 27 eleq1d k = n + 1 F k * F n + 1 *
29 28 rspcv n + 1 M N k M N F k * F n + 1 *
30 24 26 29 sylc φ n M N 1 F n + 1 *
31 fzssp1 M N 1 M N - 1 + 1
32 31 22 sseqtrid φ M N 1 M N
33 32 sselda φ n M N 1 n M N
34 9 eleq1d k = n F k * F n *
35 34 rspcv n M N k M N F k * F n *
36 33 26 35 sylc φ n M N 1 F n *
37 xleneg F n + 1 * F n * F n + 1 F n F n F n + 1
38 30 36 37 syl2anc φ n M N 1 F n + 1 F n F n F n + 1
39 13 38 mpbid φ n M N 1 F n F n + 1
40 9 xnegeqd k = n F k = F n
41 eqid k M N F k = k M N F k
42 xnegex F n V
43 40 41 42 fvmpt n M N k M N F k n = F n
44 33 43 syl φ n M N 1 k M N F k n = F n
45 27 xnegeqd k = n + 1 F k = F n + 1
46 xnegex F n + 1 V
47 45 41 46 fvmpt n + 1 M N k M N F k n + 1 = F n + 1
48 24 47 syl φ n M N 1 k M N F k n + 1 = F n + 1
49 39 44 48 3brtr4d φ n M N 1 k M N F k n k M N F k n + 1
50 1 6 49 monoordxrv φ k M N F k M k M N F k N
51 eluzfz1 N M M M N
52 1 51 syl φ M M N
53 fveq2 k = M F k = F M
54 53 xnegeqd k = M F k = F M
55 xnegex F M V
56 54 41 55 fvmpt M M N k M N F k M = F M
57 52 56 syl φ k M N F k M = F M
58 eluzfz2 N M N M N
59 1 58 syl φ N M N
60 fveq2 k = N F k = F N
61 60 xnegeqd k = N F k = F N
62 xnegex F N V
63 61 41 62 fvmpt N M N k M N F k N = F N
64 59 63 syl φ k M N F k N = F N
65 50 57 64 3brtr3d φ F M F N
66 60 eleq1d k = N F k * F N *
67 66 rspcv N M N k M N F k * F N *
68 59 25 67 sylc φ F N *
69 53 eleq1d k = M F k * F M *
70 69 rspcv M M N k M N F k * F M *
71 52 25 70 sylc φ F M *
72 xleneg F N * F M * F N F M F M F N
73 68 71 72 syl2anc φ F N F M F M F N
74 65 73 mpbird φ F N F M