Metamath Proof Explorer


Theorem monoords

Description: Ordering relation for a strictly monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses monoords.fk φ k M N F k
monoords.flt φ k M ..^ N F k < F k + 1
monoords.i φ I M N
monoords.j φ J M N
monoords.iltj φ I < J
Assertion monoords φ F I < F J

Proof

Step Hyp Ref Expression
1 monoords.fk φ k M N F k
2 monoords.flt φ k M ..^ N F k < F k + 1
3 monoords.i φ I M N
4 monoords.j φ J M N
5 monoords.iltj φ I < J
6 3 ancli φ φ I M N
7 eleq1 k = I k M N I M N
8 7 anbi2d k = I φ k M N φ I M N
9 fveq2 k = I F k = F I
10 9 eleq1d k = I F k F I
11 8 10 imbi12d k = I φ k M N F k φ I M N F I
12 11 1 vtoclg I M N φ I M N F I
13 3 6 12 sylc φ F I
14 elfzel1 I M N M
15 3 14 syl φ M
16 3 elfzelzd φ I
17 elfzle1 I M N M I
18 3 17 syl φ M I
19 eluz2 I M M I M I
20 15 16 18 19 syl3anbrc φ I M
21 elfzuz2 I M N N M
22 3 21 syl φ N M
23 eluzelz N M N
24 22 23 syl φ N
25 16 zred φ I
26 4 elfzelzd φ J
27 26 zred φ J
28 24 zred φ N
29 elfzle2 J M N J N
30 4 29 syl φ J N
31 25 27 28 5 30 ltletrd φ I < N
32 elfzo2 I M ..^ N I M N I < N
33 20 24 31 32 syl3anbrc φ I M ..^ N
34 fzofzp1 I M ..^ N I + 1 M N
35 33 34 syl φ I + 1 M N
36 35 ancli φ φ I + 1 M N
37 eleq1 k = I + 1 k M N I + 1 M N
38 37 anbi2d k = I + 1 φ k M N φ I + 1 M N
39 fveq2 k = I + 1 F k = F I + 1
40 39 eleq1d k = I + 1 F k F I + 1
41 38 40 imbi12d k = I + 1 φ k M N F k φ I + 1 M N F I + 1
42 41 1 vtoclg I + 1 M N φ I + 1 M N F I + 1
43 35 36 42 sylc φ F I + 1
44 4 ancli φ φ J M N
45 eleq1 k = J k M N J M N
46 45 anbi2d k = J φ k M N φ J M N
47 fveq2 k = J F k = F J
48 47 eleq1d k = J F k F J
49 46 48 imbi12d k = J φ k M N F k φ J M N F J
50 49 1 vtoclg J M N φ J M N F J
51 4 44 50 sylc φ F J
52 33 ancli φ φ I M ..^ N
53 eleq1 k = I k M ..^ N I M ..^ N
54 53 anbi2d k = I φ k M ..^ N φ I M ..^ N
55 fvoveq1 k = I F k + 1 = F I + 1
56 9 55 breq12d k = I F k < F k + 1 F I < F I + 1
57 54 56 imbi12d k = I φ k M ..^ N F k < F k + 1 φ I M ..^ N F I < F I + 1
58 57 2 vtoclg I M ..^ N φ I M ..^ N F I < F I + 1
59 33 52 58 sylc φ F I < F I + 1
60 16 peano2zd φ I + 1
61 zltp1le I J I < J I + 1 J
62 16 26 61 syl2anc φ I < J I + 1 J
63 5 62 mpbid φ I + 1 J
64 eluz2 J I + 1 I + 1 J I + 1 J
65 60 26 63 64 syl3anbrc φ J I + 1
66 15 adantr φ k I + 1 J M
67 24 adantr φ k I + 1 J N
68 elfzelz k I + 1 J k
69 68 adantl φ k I + 1 J k
70 66 zred φ k I + 1 J M
71 69 zred φ k I + 1 J k
72 60 zred φ I + 1
73 72 adantr φ k I + 1 J I + 1
74 25 adantr φ k I + 1 J I
75 18 adantr φ k I + 1 J M I
76 74 ltp1d φ k I + 1 J I < I + 1
77 70 74 73 75 76 lelttrd φ k I + 1 J M < I + 1
78 elfzle1 k I + 1 J I + 1 k
79 78 adantl φ k I + 1 J I + 1 k
80 70 73 71 77 79 ltletrd φ k I + 1 J M < k
81 70 71 80 ltled φ k I + 1 J M k
82 27 adantr φ k I + 1 J J
83 67 zred φ k I + 1 J N
84 elfzle2 k I + 1 J k J
85 84 adantl φ k I + 1 J k J
86 30 adantr φ k I + 1 J J N
87 71 82 83 85 86 letrd φ k I + 1 J k N
88 66 67 69 81 87 elfzd φ k I + 1 J k M N
89 88 1 syldan φ k I + 1 J F k
90 15 adantr φ k I + 1 J 1 M
91 24 adantr φ k I + 1 J 1 N
92 elfzelz k I + 1 J 1 k
93 92 adantl φ k I + 1 J 1 k
94 90 zred φ k I + 1 J 1 M
95 93 zred φ k I + 1 J 1 k
96 72 adantr φ k I + 1 J 1 I + 1
97 15 zred φ M
98 25 ltp1d φ I < I + 1
99 97 25 72 18 98 lelttrd φ M < I + 1
100 99 adantr φ k I + 1 J 1 M < I + 1
101 elfzle1 k I + 1 J 1 I + 1 k
102 101 adantl φ k I + 1 J 1 I + 1 k
103 94 96 95 100 102 ltletrd φ k I + 1 J 1 M < k
104 94 95 103 ltled φ k I + 1 J 1 M k
105 91 zred φ k I + 1 J 1 N
106 peano2rem J J 1
107 27 106 syl φ J 1
108 107 adantr φ k I + 1 J 1 J 1
109 elfzle2 k I + 1 J 1 k J 1
110 109 adantl φ k I + 1 J 1 k J 1
111 27 adantr φ k I + 1 J 1 J
112 111 ltm1d φ k I + 1 J 1 J 1 < J
113 30 adantr φ k I + 1 J 1 J N
114 108 111 105 112 113 ltletrd φ k I + 1 J 1 J 1 < N
115 95 108 105 110 114 lelttrd φ k I + 1 J 1 k < N
116 95 105 115 ltled φ k I + 1 J 1 k N
117 90 91 93 104 116 elfzd φ k I + 1 J 1 k M N
118 117 1 syldan φ k I + 1 J 1 F k
119 peano2zm N N 1
120 91 119 syl φ k I + 1 J 1 N 1
121 120 zred φ k I + 1 J 1 N 1
122 1red φ 1
123 27 28 122 30 lesub1dd φ J 1 N 1
124 123 adantr φ k I + 1 J 1 J 1 N 1
125 95 108 121 110 124 letrd φ k I + 1 J 1 k N 1
126 90 120 93 104 125 elfzd φ k I + 1 J 1 k M N 1
127 simpr φ k M N 1 k M N 1
128 fzoval N M ..^ N = M N 1
129 24 128 syl φ M ..^ N = M N 1
130 129 eqcomd φ M N 1 = M ..^ N
131 130 adantr φ k M N 1 M N 1 = M ..^ N
132 127 131 eleqtrd φ k M N 1 k M ..^ N
133 fzofzp1 k M ..^ N k + 1 M N
134 132 133 syl φ k M N 1 k + 1 M N
135 simpl φ k M N 1 φ
136 135 134 jca φ k M N 1 φ k + 1 M N
137 eleq1 j = k + 1 j M N k + 1 M N
138 137 anbi2d j = k + 1 φ j M N φ k + 1 M N
139 fveq2 j = k + 1 F j = F k + 1
140 139 eleq1d j = k + 1 F j F k + 1
141 138 140 imbi12d j = k + 1 φ j M N F j φ k + 1 M N F k + 1
142 eleq1 k = j k M N j M N
143 142 anbi2d k = j φ k M N φ j M N
144 fveq2 k = j F k = F j
145 144 eleq1d k = j F k F j
146 143 145 imbi12d k = j φ k M N F k φ j M N F j
147 146 1 chvarvv φ j M N F j
148 141 147 vtoclg k + 1 M N φ k + 1 M N F k + 1
149 134 136 148 sylc φ k M N 1 F k + 1
150 126 149 syldan φ k I + 1 J 1 F k + 1
151 132 2 syldan φ k M N 1 F k < F k + 1
152 126 151 syldan φ k I + 1 J 1 F k < F k + 1
153 118 150 152 ltled φ k I + 1 J 1 F k F k + 1
154 65 89 153 monoord φ F I + 1 F J
155 13 43 51 59 154 ltletrd φ F I < F J