Step |
Hyp |
Ref |
Expression |
1 |
|
monoords.fk |
|
2 |
|
monoords.flt |
|
3 |
|
monoords.i |
|
4 |
|
monoords.j |
|
5 |
|
monoords.iltj |
|
6 |
3
|
ancli |
|
7 |
|
eleq1 |
|
8 |
7
|
anbi2d |
|
9 |
|
fveq2 |
|
10 |
9
|
eleq1d |
|
11 |
8 10
|
imbi12d |
|
12 |
11 1
|
vtoclg |
|
13 |
3 6 12
|
sylc |
|
14 |
|
elfzel1 |
|
15 |
3 14
|
syl |
|
16 |
3
|
elfzelzd |
|
17 |
|
elfzle1 |
|
18 |
3 17
|
syl |
|
19 |
|
eluz2 |
|
20 |
15 16 18 19
|
syl3anbrc |
|
21 |
|
elfzuz2 |
|
22 |
3 21
|
syl |
|
23 |
|
eluzelz |
|
24 |
22 23
|
syl |
|
25 |
16
|
zred |
|
26 |
4
|
elfzelzd |
|
27 |
26
|
zred |
|
28 |
24
|
zred |
|
29 |
|
elfzle2 |
|
30 |
4 29
|
syl |
|
31 |
25 27 28 5 30
|
ltletrd |
|
32 |
|
elfzo2 |
|
33 |
20 24 31 32
|
syl3anbrc |
|
34 |
|
fzofzp1 |
|
35 |
33 34
|
syl |
|
36 |
35
|
ancli |
|
37 |
|
eleq1 |
|
38 |
37
|
anbi2d |
|
39 |
|
fveq2 |
|
40 |
39
|
eleq1d |
|
41 |
38 40
|
imbi12d |
|
42 |
41 1
|
vtoclg |
|
43 |
35 36 42
|
sylc |
|
44 |
4
|
ancli |
|
45 |
|
eleq1 |
|
46 |
45
|
anbi2d |
|
47 |
|
fveq2 |
|
48 |
47
|
eleq1d |
|
49 |
46 48
|
imbi12d |
|
50 |
49 1
|
vtoclg |
|
51 |
4 44 50
|
sylc |
|
52 |
33
|
ancli |
|
53 |
|
eleq1 |
|
54 |
53
|
anbi2d |
|
55 |
|
fvoveq1 |
|
56 |
9 55
|
breq12d |
|
57 |
54 56
|
imbi12d |
|
58 |
57 2
|
vtoclg |
|
59 |
33 52 58
|
sylc |
|
60 |
16
|
peano2zd |
|
61 |
|
zltp1le |
|
62 |
16 26 61
|
syl2anc |
|
63 |
5 62
|
mpbid |
|
64 |
|
eluz2 |
|
65 |
60 26 63 64
|
syl3anbrc |
|
66 |
15
|
adantr |
|
67 |
24
|
adantr |
|
68 |
|
elfzelz |
|
69 |
68
|
adantl |
|
70 |
66
|
zred |
|
71 |
69
|
zred |
|
72 |
60
|
zred |
|
73 |
72
|
adantr |
|
74 |
25
|
adantr |
|
75 |
18
|
adantr |
|
76 |
74
|
ltp1d |
|
77 |
70 74 73 75 76
|
lelttrd |
|
78 |
|
elfzle1 |
|
79 |
78
|
adantl |
|
80 |
70 73 71 77 79
|
ltletrd |
|
81 |
70 71 80
|
ltled |
|
82 |
27
|
adantr |
|
83 |
67
|
zred |
|
84 |
|
elfzle2 |
|
85 |
84
|
adantl |
|
86 |
30
|
adantr |
|
87 |
71 82 83 85 86
|
letrd |
|
88 |
66 67 69 81 87
|
elfzd |
|
89 |
88 1
|
syldan |
|
90 |
15
|
adantr |
|
91 |
24
|
adantr |
|
92 |
|
elfzelz |
|
93 |
92
|
adantl |
|
94 |
90
|
zred |
|
95 |
93
|
zred |
|
96 |
72
|
adantr |
|
97 |
15
|
zred |
|
98 |
25
|
ltp1d |
|
99 |
97 25 72 18 98
|
lelttrd |
|
100 |
99
|
adantr |
|
101 |
|
elfzle1 |
|
102 |
101
|
adantl |
|
103 |
94 96 95 100 102
|
ltletrd |
|
104 |
94 95 103
|
ltled |
|
105 |
91
|
zred |
|
106 |
|
peano2rem |
|
107 |
27 106
|
syl |
|
108 |
107
|
adantr |
|
109 |
|
elfzle2 |
|
110 |
109
|
adantl |
|
111 |
27
|
adantr |
|
112 |
111
|
ltm1d |
|
113 |
30
|
adantr |
|
114 |
108 111 105 112 113
|
ltletrd |
|
115 |
95 108 105 110 114
|
lelttrd |
|
116 |
95 105 115
|
ltled |
|
117 |
90 91 93 104 116
|
elfzd |
|
118 |
117 1
|
syldan |
|
119 |
|
peano2zm |
|
120 |
91 119
|
syl |
|
121 |
120
|
zred |
|
122 |
|
1red |
|
123 |
27 28 122 30
|
lesub1dd |
|
124 |
123
|
adantr |
|
125 |
95 108 121 110 124
|
letrd |
|
126 |
90 120 93 104 125
|
elfzd |
|
127 |
|
simpr |
|
128 |
|
fzoval |
|
129 |
24 128
|
syl |
|
130 |
129
|
eqcomd |
|
131 |
130
|
adantr |
|
132 |
127 131
|
eleqtrd |
|
133 |
|
fzofzp1 |
|
134 |
132 133
|
syl |
|
135 |
|
simpl |
|
136 |
135 134
|
jca |
|
137 |
|
eleq1 |
|
138 |
137
|
anbi2d |
|
139 |
|
fveq2 |
|
140 |
139
|
eleq1d |
|
141 |
138 140
|
imbi12d |
|
142 |
|
eleq1 |
|
143 |
142
|
anbi2d |
|
144 |
|
fveq2 |
|
145 |
144
|
eleq1d |
|
146 |
143 145
|
imbi12d |
|
147 |
146 1
|
chvarvv |
|
148 |
141 147
|
vtoclg |
|
149 |
134 136 148
|
sylc |
|
150 |
126 149
|
syldan |
|
151 |
132 2
|
syldan |
|
152 |
126 151
|
syldan |
|
153 |
118 150 152
|
ltled |
|
154 |
65 89 153
|
monoord |
|
155 |
13 43 51 59 154
|
ltletrd |
|