Step |
Hyp |
Ref |
Expression |
1 |
|
monoordxrv.1 |
|
2 |
|
monoordxrv.2 |
|
3 |
|
monoordxrv.3 |
|
4 |
|
eluzfz2 |
|
5 |
1 4
|
syl |
|
6 |
|
eleq1 |
|
7 |
|
fveq2 |
|
8 |
7
|
breq2d |
|
9 |
6 8
|
imbi12d |
|
10 |
9
|
imbi2d |
|
11 |
|
eleq1 |
|
12 |
|
fveq2 |
|
13 |
12
|
breq2d |
|
14 |
11 13
|
imbi12d |
|
15 |
14
|
imbi2d |
|
16 |
|
eleq1 |
|
17 |
|
fveq2 |
|
18 |
17
|
breq2d |
|
19 |
16 18
|
imbi12d |
|
20 |
19
|
imbi2d |
|
21 |
|
eleq1 |
|
22 |
|
fveq2 |
|
23 |
22
|
breq2d |
|
24 |
21 23
|
imbi12d |
|
25 |
24
|
imbi2d |
|
26 |
|
eluzfz1 |
|
27 |
1 26
|
syl |
|
28 |
2
|
ralrimiva |
|
29 |
|
fveq2 |
|
30 |
29
|
eleq1d |
|
31 |
30
|
rspcv |
|
32 |
27 28 31
|
sylc |
|
33 |
32
|
xrleidd |
|
34 |
33
|
a1d |
|
35 |
34
|
a1i |
|
36 |
|
simprl |
|
37 |
|
simprr |
|
38 |
|
peano2fzr |
|
39 |
36 37 38
|
syl2anc |
|
40 |
39
|
expr |
|
41 |
40
|
imim1d |
|
42 |
|
eluzelz |
|
43 |
36 42
|
syl |
|
44 |
|
elfzuz3 |
|
45 |
37 44
|
syl |
|
46 |
|
eluzp1m1 |
|
47 |
43 45 46
|
syl2anc |
|
48 |
|
elfzuzb |
|
49 |
36 47 48
|
sylanbrc |
|
50 |
3
|
ralrimiva |
|
51 |
50
|
adantr |
|
52 |
|
fveq2 |
|
53 |
|
fvoveq1 |
|
54 |
52 53
|
breq12d |
|
55 |
54
|
rspcv |
|
56 |
49 51 55
|
sylc |
|
57 |
32
|
adantr |
|
58 |
28
|
adantr |
|
59 |
52
|
eleq1d |
|
60 |
59
|
rspcv |
|
61 |
39 58 60
|
sylc |
|
62 |
|
fveq2 |
|
63 |
62
|
eleq1d |
|
64 |
63
|
rspcv |
|
65 |
37 58 64
|
sylc |
|
66 |
|
xrletr |
|
67 |
57 61 65 66
|
syl3anc |
|
68 |
56 67
|
mpan2d |
|
69 |
41 68
|
animpimp2impd |
|
70 |
10 15 20 25 35 69
|
uzind4 |
|
71 |
1 70
|
mpcom |
|
72 |
5 71
|
mpd |
|