Metamath Proof Explorer


Theorem monoordxrv

Description: Ordering relation for a monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022)

Ref Expression
Hypotheses monoordxrv.1 φ N M
monoordxrv.2 φ k M N F k *
monoordxrv.3 φ k M N 1 F k F k + 1
Assertion monoordxrv φ F M F N

Proof

Step Hyp Ref Expression
1 monoordxrv.1 φ N M
2 monoordxrv.2 φ k M N F k *
3 monoordxrv.3 φ k M N 1 F k F k + 1
4 eluzfz2 N M N M N
5 1 4 syl φ N M N
6 eleq1 x = M x M N M M N
7 fveq2 x = M F x = F M
8 7 breq2d x = M F M F x F M F M
9 6 8 imbi12d x = M x M N F M F x M M N F M F M
10 9 imbi2d x = M φ x M N F M F x φ M M N F M F M
11 eleq1 x = n x M N n M N
12 fveq2 x = n F x = F n
13 12 breq2d x = n F M F x F M F n
14 11 13 imbi12d x = n x M N F M F x n M N F M F n
15 14 imbi2d x = n φ x M N F M F x φ n M N F M F n
16 eleq1 x = n + 1 x M N n + 1 M N
17 fveq2 x = n + 1 F x = F n + 1
18 17 breq2d x = n + 1 F M F x F M F n + 1
19 16 18 imbi12d x = n + 1 x M N F M F x n + 1 M N F M F n + 1
20 19 imbi2d x = n + 1 φ x M N F M F x φ n + 1 M N F M F n + 1
21 eleq1 x = N x M N N M N
22 fveq2 x = N F x = F N
23 22 breq2d x = N F M F x F M F N
24 21 23 imbi12d x = N x M N F M F x N M N F M F N
25 24 imbi2d x = N φ x M N F M F x φ N M N F M F N
26 eluzfz1 N M M M N
27 1 26 syl φ M M N
28 2 ralrimiva φ k M N F k *
29 fveq2 k = M F k = F M
30 29 eleq1d k = M F k * F M *
31 30 rspcv M M N k M N F k * F M *
32 27 28 31 sylc φ F M *
33 32 xrleidd φ F M F M
34 33 a1d φ M M N F M F M
35 34 a1i M φ M M N F M F M
36 simprl φ n M n + 1 M N n M
37 simprr φ n M n + 1 M N n + 1 M N
38 peano2fzr n M n + 1 M N n M N
39 36 37 38 syl2anc φ n M n + 1 M N n M N
40 39 expr φ n M n + 1 M N n M N
41 40 imim1d φ n M n M N F M F n n + 1 M N F M F n
42 eluzelz n M n
43 36 42 syl φ n M n + 1 M N n
44 elfzuz3 n + 1 M N N n + 1
45 37 44 syl φ n M n + 1 M N N n + 1
46 eluzp1m1 n N n + 1 N 1 n
47 43 45 46 syl2anc φ n M n + 1 M N N 1 n
48 elfzuzb n M N 1 n M N 1 n
49 36 47 48 sylanbrc φ n M n + 1 M N n M N 1
50 3 ralrimiva φ k M N 1 F k F k + 1
51 50 adantr φ n M n + 1 M N k M N 1 F k F k + 1
52 fveq2 k = n F k = F n
53 fvoveq1 k = n F k + 1 = F n + 1
54 52 53 breq12d k = n F k F k + 1 F n F n + 1
55 54 rspcv n M N 1 k M N 1 F k F k + 1 F n F n + 1
56 49 51 55 sylc φ n M n + 1 M N F n F n + 1
57 32 adantr φ n M n + 1 M N F M *
58 28 adantr φ n M n + 1 M N k M N F k *
59 52 eleq1d k = n F k * F n *
60 59 rspcv n M N k M N F k * F n *
61 39 58 60 sylc φ n M n + 1 M N F n *
62 fveq2 k = n + 1 F k = F n + 1
63 62 eleq1d k = n + 1 F k * F n + 1 *
64 63 rspcv n + 1 M N k M N F k * F n + 1 *
65 37 58 64 sylc φ n M n + 1 M N F n + 1 *
66 xrletr F M * F n * F n + 1 * F M F n F n F n + 1 F M F n + 1
67 57 61 65 66 syl3anc φ n M n + 1 M N F M F n F n F n + 1 F M F n + 1
68 56 67 mpan2d φ n M n + 1 M N F M F n F M F n + 1
69 41 68 animpimp2impd n M φ n M N F M F n φ n + 1 M N F M F n + 1
70 10 15 20 25 35 69 uzind4 N M φ N M N F M F N
71 1 70 mpcom φ N M N F M F N
72 5 71 mpd φ F M F N