Metamath Proof Explorer


Theorem monotoddzz

Description: A function (given implicitly) which is odd and monotonic on NN0 is monotonic on ZZ . This proof is far too long. (Contributed by Stefan O'Rear, 25-Sep-2014)

Ref Expression
Hypotheses monotoddzz.1 φ x 0 y 0 x < y E < F
monotoddzz.2 φ x E
monotoddzz.3 φ y G = F
monotoddzz.4 x = A E = C
monotoddzz.5 x = B E = D
monotoddzz.6 x = y E = F
monotoddzz.7 x = y E = G
Assertion monotoddzz φ A B A < B C < D

Proof

Step Hyp Ref Expression
1 monotoddzz.1 φ x 0 y 0 x < y E < F
2 monotoddzz.2 φ x E
3 monotoddzz.3 φ y G = F
4 monotoddzz.4 x = A E = C
5 monotoddzz.5 x = B E = D
6 monotoddzz.6 x = y E = F
7 monotoddzz.7 x = y E = G
8 nfv x φ a
9 nffvmpt1 _ x x E a
10 9 nfel1 x x E a
11 8 10 nfim x φ a x E a
12 eleq1 x = a x a
13 12 anbi2d x = a φ x φ a
14 fveq2 x = a x E x = x E a
15 14 eleq1d x = a x E x x E a
16 13 15 imbi12d x = a φ x x E x φ a x E a
17 simpr φ x x
18 eqid x E = x E
19 18 fvmpt2 x E x E x = E
20 17 2 19 syl2anc φ x x E x = E
21 20 2 eqeltrd φ x x E x
22 11 16 21 chvarfv φ a x E a
23 eleq1 y = a y a
24 23 anbi2d y = a φ y φ a
25 negeq y = a y = a
26 25 fveq2d y = a x E y = x E a
27 fveq2 y = a x E y = x E a
28 27 negeqd y = a x E y = x E a
29 26 28 eqeq12d y = a x E y = x E y x E a = x E a
30 24 29 imbi12d y = a φ y x E y = x E y φ a x E a = x E a
31 znegcl y y
32 31 adantl φ y y
33 negex y V
34 eleq1 x = y x y
35 34 anbi2d x = y φ x φ y
36 7 eleq1d x = y E G
37 35 36 imbi12d x = y φ x E φ y G
38 33 37 2 vtocl φ y G
39 31 38 sylan2 φ y G
40 18 7 32 39 fvmptd3 φ y x E y = G
41 simpr φ y y
42 eleq1 x = y x y
43 42 anbi2d x = y φ x φ y
44 6 eleq1d x = y E F
45 43 44 imbi12d x = y φ x E φ y F
46 45 2 chvarvv φ y F
47 18 6 41 46 fvmptd3 φ y x E y = F
48 47 negeqd φ y x E y = F
49 3 40 48 3eqtr4d φ y x E y = x E y
50 30 49 chvarvv φ a x E a = x E a
51 nfv x φ a 0 b 0
52 nfv x a < b
53 nfcv _ x <
54 nffvmpt1 _ x x E b
55 9 53 54 nfbr x x E a < x E b
56 52 55 nfim x a < b x E a < x E b
57 51 56 nfim x φ a 0 b 0 a < b x E a < x E b
58 eleq1 x = a x 0 a 0
59 58 3anbi2d x = a φ x 0 b 0 φ a 0 b 0
60 breq1 x = a x < b a < b
61 14 breq1d x = a x E x < x E b x E a < x E b
62 60 61 imbi12d x = a x < b x E x < x E b a < b x E a < x E b
63 59 62 imbi12d x = a φ x 0 b 0 x < b x E x < x E b φ a 0 b 0 a < b x E a < x E b
64 eleq1 y = b y 0 b 0
65 64 3anbi3d y = b φ x 0 y 0 φ x 0 b 0
66 breq2 y = b x < y x < b
67 fveq2 y = b x E y = x E b
68 67 breq2d y = b x E x < x E y x E x < x E b
69 66 68 imbi12d y = b x < y x E x < x E y x < b x E x < x E b
70 65 69 imbi12d y = b φ x 0 y 0 x < y x E x < x E y φ x 0 b 0 x < b x E x < x E b
71 nn0z x 0 x
72 71 20 sylan2 φ x 0 x E x = E
73 72 3adant3 φ x 0 y 0 x E x = E
74 nfv x φ y 0
75 nffvmpt1 _ x x E y
76 75 nfeq1 x x E y = F
77 74 76 nfim x φ y 0 x E y = F
78 eleq1 x = y x 0 y 0
79 78 anbi2d x = y φ x 0 φ y 0
80 fveq2 x = y x E x = x E y
81 80 6 eqeq12d x = y x E x = E x E y = F
82 79 81 imbi12d x = y φ x 0 x E x = E φ y 0 x E y = F
83 77 82 72 chvarfv φ y 0 x E y = F
84 83 3adant2 φ x 0 y 0 x E y = F
85 73 84 breq12d φ x 0 y 0 x E x < x E y E < F
86 1 85 sylibrd φ x 0 y 0 x < y x E x < x E y
87 70 86 chvarvv φ x 0 b 0 x < b x E x < x E b
88 57 63 87 chvarfv φ a 0 b 0 a < b x E a < x E b
89 22 50 88 monotoddzzfi φ A B A < B x E A < x E B
90 simp2 φ A B A
91 eleq1 x = A x A
92 91 anbi2d x = A φ x φ A
93 4 eleq1d x = A E C
94 92 93 imbi12d x = A φ x E φ A C
95 94 2 vtoclg A φ A C
96 95 anabsi7 φ A C
97 96 3adant3 φ A B C
98 18 4 90 97 fvmptd3 φ A B x E A = C
99 simp3 φ A B B
100 eleq1 x = B x B
101 100 anbi2d x = B φ x φ B
102 5 eleq1d x = B E D
103 101 102 imbi12d x = B φ x E φ B D
104 103 2 vtoclg B φ B D
105 104 anabsi7 φ B D
106 105 3adant2 φ A B D
107 18 5 99 106 fvmptd3 φ A B x E B = D
108 98 107 breq12d φ A B x E A < x E B C < D
109 89 108 bitrd φ A B A < B C < D