Metamath Proof Explorer


Theorem monpropd

Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same monomorphisms. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses monpropd.3 φ Hom 𝑓 C = Hom 𝑓 D
monpropd.4 φ comp 𝑓 C = comp 𝑓 D
monpropd.c φ C Cat
monpropd.d φ D Cat
Assertion monpropd φ Mono C = Mono D

Proof

Step Hyp Ref Expression
1 monpropd.3 φ Hom 𝑓 C = Hom 𝑓 D
2 monpropd.4 φ comp 𝑓 C = comp 𝑓 D
3 monpropd.c φ C Cat
4 monpropd.d φ D Cat
5 eqid Base C = Base C
6 eqid Hom C = Hom C
7 eqid Hom D = Hom D
8 1 ad2antrr φ a Base C b Base C Hom 𝑓 C = Hom 𝑓 D
9 8 ad2antrr φ a Base C b Base C f a Hom C b c Base C Hom 𝑓 C = Hom 𝑓 D
10 simpr φ a Base C b Base C f a Hom C b c Base C c Base C
11 simp-4r φ a Base C b Base C f a Hom C b c Base C a Base C
12 5 6 7 9 10 11 homfeqval φ a Base C b Base C f a Hom C b c Base C c Hom C a = c Hom D a
13 eqid comp C = comp C
14 eqid comp D = comp D
15 1 ad5antr φ a Base C b Base C f a Hom C b c Base C g c Hom C a Hom 𝑓 C = Hom 𝑓 D
16 2 ad5antr φ a Base C b Base C f a Hom C b c Base C g c Hom C a comp 𝑓 C = comp 𝑓 D
17 simplr φ a Base C b Base C f a Hom C b c Base C g c Hom C a c Base C
18 simp-5r φ a Base C b Base C f a Hom C b c Base C g c Hom C a a Base C
19 simp-4r φ a Base C b Base C f a Hom C b c Base C g c Hom C a b Base C
20 simpr φ a Base C b Base C f a Hom C b c Base C g c Hom C a g c Hom C a
21 simpllr φ a Base C b Base C f a Hom C b c Base C g c Hom C a f a Hom C b
22 5 6 13 14 15 16 17 18 19 20 21 comfeqval φ a Base C b Base C f a Hom C b c Base C g c Hom C a f c a comp C b g = f c a comp D b g
23 12 22 mpteq12dva φ a Base C b Base C f a Hom C b c Base C g c Hom C a f c a comp C b g = g c Hom D a f c a comp D b g
24 23 cnveqd φ a Base C b Base C f a Hom C b c Base C g c Hom C a f c a comp C b g -1 = g c Hom D a f c a comp D b g -1
25 24 funeqd φ a Base C b Base C f a Hom C b c Base C Fun g c Hom C a f c a comp C b g -1 Fun g c Hom D a f c a comp D b g -1
26 25 ralbidva φ a Base C b Base C f a Hom C b c Base C Fun g c Hom C a f c a comp C b g -1 c Base C Fun g c Hom D a f c a comp D b g -1
27 26 rabbidva φ a Base C b Base C f a Hom C b | c Base C Fun g c Hom C a f c a comp C b g -1 = f a Hom C b | c Base C Fun g c Hom D a f c a comp D b g -1
28 simplr φ a Base C b Base C a Base C
29 simpr φ a Base C b Base C b Base C
30 5 6 7 8 28 29 homfeqval φ a Base C b Base C a Hom C b = a Hom D b
31 1 homfeqbas φ Base C = Base D
32 31 ad2antrr φ a Base C b Base C Base C = Base D
33 32 raleqdv φ a Base C b Base C c Base C Fun g c Hom D a f c a comp D b g -1 c Base D Fun g c Hom D a f c a comp D b g -1
34 30 33 rabeqbidv φ a Base C b Base C f a Hom C b | c Base C Fun g c Hom D a f c a comp D b g -1 = f a Hom D b | c Base D Fun g c Hom D a f c a comp D b g -1
35 27 34 eqtrd φ a Base C b Base C f a Hom C b | c Base C Fun g c Hom C a f c a comp C b g -1 = f a Hom D b | c Base D Fun g c Hom D a f c a comp D b g -1
36 35 3impa φ a Base C b Base C f a Hom C b | c Base C Fun g c Hom C a f c a comp C b g -1 = f a Hom D b | c Base D Fun g c Hom D a f c a comp D b g -1
37 36 mpoeq3dva φ a Base C , b Base C f a Hom C b | c Base C Fun g c Hom C a f c a comp C b g -1 = a Base C , b Base C f a Hom D b | c Base D Fun g c Hom D a f c a comp D b g -1
38 mpoeq12 Base C = Base D Base C = Base D a Base C , b Base C f a Hom D b | c Base D Fun g c Hom D a f c a comp D b g -1 = a Base D , b Base D f a Hom D b | c Base D Fun g c Hom D a f c a comp D b g -1
39 31 31 38 syl2anc φ a Base C , b Base C f a Hom D b | c Base D Fun g c Hom D a f c a comp D b g -1 = a Base D , b Base D f a Hom D b | c Base D Fun g c Hom D a f c a comp D b g -1
40 37 39 eqtrd φ a Base C , b Base C f a Hom C b | c Base C Fun g c Hom C a f c a comp C b g -1 = a Base D , b Base D f a Hom D b | c Base D Fun g c Hom D a f c a comp D b g -1
41 eqid Mono C = Mono C
42 5 6 13 41 3 monfval φ Mono C = a Base C , b Base C f a Hom C b | c Base C Fun g c Hom C a f c a comp C b g -1
43 eqid Base D = Base D
44 eqid Mono D = Mono D
45 43 7 14 44 4 monfval φ Mono D = a Base D , b Base D f a Hom D b | c Base D Fun g c Hom D a f c a comp D b g -1
46 40 42 45 3eqtr4d φ Mono C = Mono D