Step |
Hyp |
Ref |
Expression |
1 |
|
monpropd.3 |
|
2 |
|
monpropd.4 |
|
3 |
|
monpropd.c |
|
4 |
|
monpropd.d |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
1
|
ad2antrr |
|
9 |
8
|
ad2antrr |
|
10 |
|
simpr |
|
11 |
|
simp-4r |
|
12 |
5 6 7 9 10 11
|
homfeqval |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
1
|
ad5antr |
|
16 |
2
|
ad5antr |
|
17 |
|
simplr |
|
18 |
|
simp-5r |
|
19 |
|
simp-4r |
|
20 |
|
simpr |
|
21 |
|
simpllr |
|
22 |
5 6 13 14 15 16 17 18 19 20 21
|
comfeqval |
|
23 |
12 22
|
mpteq12dva |
|
24 |
23
|
cnveqd |
|
25 |
24
|
funeqd |
|
26 |
25
|
ralbidva |
|
27 |
26
|
rabbidva |
|
28 |
|
simplr |
|
29 |
|
simpr |
|
30 |
5 6 7 8 28 29
|
homfeqval |
|
31 |
1
|
homfeqbas |
|
32 |
31
|
ad2antrr |
|
33 |
32
|
raleqdv |
|
34 |
30 33
|
rabeqbidv |
|
35 |
27 34
|
eqtrd |
|
36 |
35
|
3impa |
|
37 |
36
|
mpoeq3dva |
|
38 |
|
mpoeq12 |
|
39 |
31 31 38
|
syl2anc |
|
40 |
37 39
|
eqtrd |
|
41 |
|
eqid |
|
42 |
5 6 13 41 3
|
monfval |
|
43 |
|
eqid |
|
44 |
|
eqid |
|
45 |
43 7 14 44 4
|
monfval |
|
46 |
40 42 45
|
3eqtr4d |
|