Metamath Proof Explorer


Theorem moop2

Description: "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypothesis moop2.1 B V
Assertion moop2 * x A = B x

Proof

Step Hyp Ref Expression
1 moop2.1 B V
2 eqtr2 A = B x A = y / x B y B x = y / x B y
3 vex x V
4 1 3 opth B x = y / x B y B = y / x B x = y
5 4 simprbi B x = y / x B y x = y
6 2 5 syl A = B x A = y / x B y x = y
7 6 gen2 x y A = B x A = y / x B y x = y
8 nfcsb1v _ x y / x B
9 nfcv _ x y
10 8 9 nfop _ x y / x B y
11 10 nfeq2 x A = y / x B y
12 csbeq1a x = y B = y / x B
13 id x = y x = y
14 12 13 opeq12d x = y B x = y / x B y
15 14 eqeq2d x = y A = B x A = y / x B y
16 11 15 mo4f * x A = B x x y A = B x A = y / x B y x = y
17 7 16 mpbir * x A = B x