Metamath Proof Explorer


Theorem mopick2

Description: "At most one" can show the existence of a common value. In this case we can infer existence of conjunction from a conjunction of existence, and it is one way to achieve the converse of 19.40 . (Contributed by NM, 5-Apr-2004) (Proof shortened by Andrew Salmon, 9-Jul-2011)

Ref Expression
Assertion mopick2 * x φ x φ ψ x φ χ x φ ψ χ

Proof

Step Hyp Ref Expression
1 nfmo1 x * x φ
2 nfe1 x x φ ψ
3 1 2 nfan x * x φ x φ ψ
4 mopick * x φ x φ ψ φ ψ
5 4 ancld * x φ x φ ψ φ φ ψ
6 5 anim1d * x φ x φ ψ φ χ φ ψ χ
7 df-3an φ ψ χ φ ψ χ
8 6 7 syl6ibr * x φ x φ ψ φ χ φ ψ χ
9 3 8 eximd * x φ x φ ψ x φ χ x φ ψ χ
10 9 3impia * x φ x φ ψ x φ χ x φ ψ χ