Metamath Proof Explorer


Theorem mopickr

Description: "At most one" picks a variable value, eliminating an existential quantifier. The proof begins with references *2.21 ( pm2.21 ) and *14.26 ( eupickbi ) from WhiteheadRussell p. 104 and p. 183. (Contributed by Peter Mazsa, 18-Nov-2024) (Proof modification is discouraged.)

Ref Expression
Assertion mopickr * x ψ x φ ψ ψ φ

Proof

Step Hyp Ref Expression
1 exancom x φ ψ x ψ φ
2 moeu2 * x ψ ¬ x ψ ∃! x ψ
3 19.8a ψ x ψ
4 3 con3i ¬ x ψ ¬ ψ
5 pm2.21 ¬ ψ ψ φ
6 4 5 syl ¬ x ψ ψ φ
7 6 a1d ¬ x ψ x ψ φ ψ φ
8 eupickbi ∃! x ψ x ψ φ x ψ φ
9 sp x ψ φ ψ φ
10 8 9 biimtrdi ∃! x ψ x ψ φ ψ φ
11 7 10 jaoi ¬ x ψ ∃! x ψ x ψ φ ψ φ
12 2 11 sylbi * x ψ x ψ φ ψ φ
13 1 12 biimtrid * x ψ x φ ψ ψ φ
14 13 imp * x ψ x φ ψ ψ φ