Metamath Proof Explorer


Theorem mopn0

Description: The empty set is an open set of a metric space. Part of Theorem T1 of Kreyszig p. 19. (Contributed by NM, 4-Sep-2006)

Ref Expression
Hypothesis mopni.1 J = MetOpen D
Assertion mopn0 D ∞Met X J

Proof

Step Hyp Ref Expression
1 mopni.1 J = MetOpen D
2 1 mopntop D ∞Met X J Top
3 0opn J Top J
4 2 3 syl D ∞Met X J