Metamath Proof Explorer


Theorem mopnfss

Description: The family of open sets of a metric space is a collection of subsets of the base set. (Contributed by NM, 3-Sep-2006) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypothesis mopnval.1 J = MetOpen D
Assertion mopnfss D ∞Met X J 𝒫 X

Proof

Step Hyp Ref Expression
1 mopnval.1 J = MetOpen D
2 pwuni J 𝒫 J
3 1 mopnuni D ∞Met X X = J
4 3 pweqd D ∞Met X 𝒫 X = 𝒫 J
5 2 4 sseqtrrid D ∞Met X J 𝒫 X