Database
BASIC TOPOLOGY
Metric spaces
Open sets of a metric space
mopnfss
Metamath Proof Explorer
Description: The family of open sets of a metric space is a collection of subsets of
the base set. (Contributed by NM , 3-Sep-2006) (Revised by Mario
Carneiro , 12-Nov-2013)
Ref
Expression
Hypothesis
mopnval.1
⊢ J = MetOpen ⁡ D
Assertion
mopnfss
⊢ D ∈ ∞Met ⁡ X → J ⊆ 𝒫 X
Proof
Step
Hyp
Ref
Expression
1
mopnval.1
⊢ J = MetOpen ⁡ D
2
pwuni
⊢ J ⊆ 𝒫 ⋃ J
3
1
mopnuni
⊢ D ∈ ∞Met ⁡ X → X = ⋃ J
4
3
pweqd
⊢ D ∈ ∞Met ⁡ X → 𝒫 X = 𝒫 ⋃ J
5
2 4
sseqtrrid
⊢ D ∈ ∞Met ⁡ X → J ⊆ 𝒫 X