Metamath Proof Explorer


Theorem mopni

Description: An open set of a metric space includes a ball around each of its points. (Contributed by NM, 3-Sep-2006) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypothesis mopni.1 J = MetOpen D
Assertion mopni D ∞Met X A J P A x ran ball D P x x A

Proof

Step Hyp Ref Expression
1 mopni.1 J = MetOpen D
2 1 elmopn D ∞Met X A J A X y A x ran ball D y x x A
3 2 simplbda D ∞Met X A J y A x ran ball D y x x A
4 eleq1 y = P y x P x
5 4 anbi1d y = P y x x A P x x A
6 5 rexbidv y = P x ran ball D y x x A x ran ball D P x x A
7 6 rspccv y A x ran ball D y x x A P A x ran ball D P x x A
8 3 7 syl D ∞Met X A J P A x ran ball D P x x A
9 8 3impia D ∞Met X A J P A x ran ball D P x x A