Metamath Proof Explorer


Theorem mopni2

Description: An open set of a metric space includes a ball around each of its points. (Contributed by NM, 2-May-2007) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypothesis mopni.1 J = MetOpen D
Assertion mopni2 D ∞Met X A J P A x + P ball D x A

Proof

Step Hyp Ref Expression
1 mopni.1 J = MetOpen D
2 1 mopni D ∞Met X A J P A y ran ball D P y y A
3 1 mopnss D ∞Met X A J A X
4 3 sselda D ∞Met X A J P A P X
5 blssex D ∞Met X P X y ran ball D P y y A x + P ball D x A
6 5 adantlr D ∞Met X A J P X y ran ball D P y y A x + P ball D x A
7 4 6 syldan D ∞Met X A J P A y ran ball D P y y A x + P ball D x A
8 7 3impa D ∞Met X A J P A y ran ball D P y y A x + P ball D x A
9 2 8 mpbid D ∞Met X A J P A x + P ball D x A