Metamath Proof Explorer


Theorem mopni3

Description: An open set of a metric space includes an arbitrarily small ball around each of its points. (Contributed by NM, 20-Sep-2007) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypothesis mopni.1 J = MetOpen D
Assertion mopni3 D ∞Met X A J P A R + x + x < R P ball D x A

Proof

Step Hyp Ref Expression
1 mopni.1 J = MetOpen D
2 1 mopni2 D ∞Met X A J P A y + P ball D y A
3 2 adantr D ∞Met X A J P A R + y + P ball D y A
4 simp1 D ∞Met X A J P A D ∞Met X
5 1 mopnss D ∞Met X A J A X
6 5 sselda D ∞Met X A J P A P X
7 6 3impa D ∞Met X A J P A P X
8 4 7 jca D ∞Met X A J P A D ∞Met X P X
9 ssblex D ∞Met X P X R + y + x + x < R P ball D x P ball D y
10 8 9 sylan D ∞Met X A J P A R + y + x + x < R P ball D x P ball D y
11 10 anassrs D ∞Met X A J P A R + y + x + x < R P ball D x P ball D y
12 sstr P ball D x P ball D y P ball D y A P ball D x A
13 12 expcom P ball D y A P ball D x P ball D y P ball D x A
14 13 anim2d P ball D y A x < R P ball D x P ball D y x < R P ball D x A
15 14 reximdv P ball D y A x + x < R P ball D x P ball D y x + x < R P ball D x A
16 11 15 syl5com D ∞Met X A J P A R + y + P ball D y A x + x < R P ball D x A
17 16 rexlimdva D ∞Met X A J P A R + y + P ball D y A x + x < R P ball D x A
18 3 17 mpd D ∞Met X A J P A R + x + x < R P ball D x A