Metamath Proof Explorer


Theorem mopnin

Description: The intersection of two open sets of a metric space is open. (Contributed by NM, 4-Sep-2006) (Revised by Mario Carneiro, 23-Dec-2013)

Ref Expression
Hypothesis mopni.1 J = MetOpen D
Assertion mopnin D ∞Met X A J B J A B J

Proof

Step Hyp Ref Expression
1 mopni.1 J = MetOpen D
2 1 mopntop D ∞Met X J Top
3 inopn J Top A J B J A B J
4 2 3 syl3an1 D ∞Met X A J B J A B J