Metamath Proof Explorer


Theorem mopnss

Description: An open set of a metric space is a subspace of its base set. (Contributed by NM, 3-Sep-2006)

Ref Expression
Hypothesis mopnval.1 J = MetOpen D
Assertion mopnss D ∞Met X A J A X

Proof

Step Hyp Ref Expression
1 mopnval.1 J = MetOpen D
2 1 mopntopon D ∞Met X J TopOn X
3 toponss J TopOn X A J A X
4 2 3 sylan D ∞Met X A J A X