Metamath Proof Explorer


Theorem mopntop

Description: The set of open sets of a metric space is a topology. (Contributed by NM, 28-Aug-2006) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypothesis mopnval.1 J = MetOpen D
Assertion mopntop D ∞Met X J Top

Proof

Step Hyp Ref Expression
1 mopnval.1 J = MetOpen D
2 1 mopntopon D ∞Met X J TopOn X
3 topontop J TopOn X J Top
4 2 3 syl D ∞Met X J Top