Metamath Proof Explorer


Theorem mopntopon

Description: The set of open sets of a metric space X is a topology on X . Remark in Kreyszig p. 19. This theorem connects the two concepts and makes available the theorems for topologies for use with metric spaces. (Contributed by Mario Carneiro, 24-Aug-2015)

Ref Expression
Hypothesis mopnval.1 J = MetOpen D
Assertion mopntopon D ∞Met X J TopOn X

Proof

Step Hyp Ref Expression
1 mopnval.1 J = MetOpen D
2 1 mopnval D ∞Met X J = topGen ran ball D
3 blbas D ∞Met X ran ball D TopBases
4 tgtopon ran ball D TopBases topGen ran ball D TopOn ran ball D
5 3 4 syl D ∞Met X topGen ran ball D TopOn ran ball D
6 unirnbl D ∞Met X ran ball D = X
7 6 fveq2d D ∞Met X TopOn ran ball D = TopOn X
8 5 7 eleqtrd D ∞Met X topGen ran ball D TopOn X
9 2 8 eqeltrd D ∞Met X J TopOn X