Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
morex
Next ⟩
euxfr2w
Metamath Proof Explorer
Ascii
Unicode
Theorem
morex
Description:
Derive membership from uniqueness.
(Contributed by
Jeff Madsen
, 2-Sep-2009)
Ref
Expression
Hypotheses
morex.1
⊢
B
∈
V
morex.2
⊢
x
=
B
→
φ
↔
ψ
Assertion
morex
⊢
∃
x
∈
A
φ
∧
∃
*
x
φ
→
ψ
→
B
∈
A
Proof
Step
Hyp
Ref
Expression
1
morex.1
⊢
B
∈
V
2
morex.2
⊢
x
=
B
→
φ
↔
ψ
3
df-rex
⊢
∃
x
∈
A
φ
↔
∃
x
x
∈
A
∧
φ
4
exancom
⊢
∃
x
x
∈
A
∧
φ
↔
∃
x
φ
∧
x
∈
A
5
3
4
bitri
⊢
∃
x
∈
A
φ
↔
∃
x
φ
∧
x
∈
A
6
nfmo1
⊢
Ⅎ
x
∃
*
x
φ
7
nfe1
⊢
Ⅎ
x
∃
x
φ
∧
x
∈
A
8
6
7
nfan
⊢
Ⅎ
x
∃
*
x
φ
∧
∃
x
φ
∧
x
∈
A
9
mopick
⊢
∃
*
x
φ
∧
∃
x
φ
∧
x
∈
A
→
φ
→
x
∈
A
10
8
9
alrimi
⊢
∃
*
x
φ
∧
∃
x
φ
∧
x
∈
A
→
∀
x
φ
→
x
∈
A
11
eleq1
⊢
x
=
B
→
x
∈
A
↔
B
∈
A
12
2
11
imbi12d
⊢
x
=
B
→
φ
→
x
∈
A
↔
ψ
→
B
∈
A
13
1
12
spcv
⊢
∀
x
φ
→
x
∈
A
→
ψ
→
B
∈
A
14
10
13
syl
⊢
∃
*
x
φ
∧
∃
x
φ
∧
x
∈
A
→
ψ
→
B
∈
A
15
5
14
sylan2b
⊢
∃
*
x
φ
∧
∃
x
∈
A
φ
→
ψ
→
B
∈
A
16
15
ancoms
⊢
∃
x
∈
A
φ
∧
∃
*
x
φ
→
ψ
→
B
∈
A