Metamath Proof Explorer


Theorem morex

Description: Derive membership from uniqueness. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses morex.1 B V
morex.2 x = B φ ψ
Assertion morex x A φ * x φ ψ B A

Proof

Step Hyp Ref Expression
1 morex.1 B V
2 morex.2 x = B φ ψ
3 df-rex x A φ x x A φ
4 exancom x x A φ x φ x A
5 3 4 bitri x A φ x φ x A
6 nfmo1 x * x φ
7 nfe1 x x φ x A
8 6 7 nfan x * x φ x φ x A
9 mopick * x φ x φ x A φ x A
10 8 9 alrimi * x φ x φ x A x φ x A
11 eleq1 x = B x A B A
12 2 11 imbi12d x = B φ x A ψ B A
13 1 12 spcv x φ x A ψ B A
14 10 13 syl * x φ x φ x A ψ B A
15 5 14 sylan2b * x φ x A φ ψ B A
16 15 ancoms x A φ * x φ ψ B A