Metamath Proof Explorer


Theorem moriotass

Description: Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006) (Revised by NM, 16-Jun-2017)

Ref Expression
Assertion moriotass A B x A φ * x B φ ι x A | φ = ι x B | φ

Proof

Step Hyp Ref Expression
1 ssrexv A B x A φ x B φ
2 1 imp A B x A φ x B φ
3 2 3adant3 A B x A φ * x B φ x B φ
4 simp3 A B x A φ * x B φ * x B φ
5 reu5 ∃! x B φ x B φ * x B φ
6 3 4 5 sylanbrc A B x A φ * x B φ ∃! x B φ
7 riotass A B x A φ ∃! x B φ ι x A | φ = ι x B | φ
8 6 7 syld3an3 A B x A φ * x B φ ι x A | φ = ι x B | φ