Metamath Proof Explorer


Theorem mosn

Description: "At most one" element in a singleton. (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Assertion mosn A = B * x x A

Proof

Step Hyp Ref Expression
1 rmosn * x B
2 rmotru * x x B * x B
3 1 2 mpbir * x x B
4 eleq2 A = B x A x B
5 4 mobidv A = B * x x A * x x B
6 3 5 mpbiri A = B * x x A