Metamath Proof Explorer


Theorem mosssn2

Description: Two ways of expressing "at most one" element in a class. (Contributed by Zhi Wang, 23-Sep-2024)

Ref Expression
Assertion mosssn2 * x x A y A y

Proof

Step Hyp Ref Expression
1 19.45v y A = A = y A = y A = y
2 sssn A y A = A = y
3 2 exbii y A y y A = A = y
4 mo0sn * x x A A = y A = y
5 1 3 4 3bitr4ri * x x A y A y