Metamath Proof Explorer


Theorem motcgr3

Description: Property of a motion: distances are preserved, special case of triangles. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses motcgr3.p P = Base G
motcgr3.m - ˙ = dist G
motcgr3.r ˙ = 𝒢 G
motcgr3.g φ G 𝒢 Tarski
motcgr3.a φ A P
motcgr3.b φ B P
motcgr3.c φ C P
motcgr3.d φ D = H A
motcgr3.e φ E = H B
motcgr3.f φ F = H C
motcgr3.h φ H G Ismt G
Assertion motcgr3 φ ⟨“ ABC ”⟩ ˙ ⟨“ DEF ”⟩

Proof

Step Hyp Ref Expression
1 motcgr3.p P = Base G
2 motcgr3.m - ˙ = dist G
3 motcgr3.r ˙ = 𝒢 G
4 motcgr3.g φ G 𝒢 Tarski
5 motcgr3.a φ A P
6 motcgr3.b φ B P
7 motcgr3.c φ C P
8 motcgr3.d φ D = H A
9 motcgr3.e φ E = H B
10 motcgr3.f φ F = H C
11 motcgr3.h φ H G Ismt G
12 1 2 4 11 5 motcl φ H A P
13 8 12 eqeltrd φ D P
14 1 2 4 11 6 motcl φ H B P
15 9 14 eqeltrd φ E P
16 1 2 4 11 7 motcl φ H C P
17 10 16 eqeltrd φ F P
18 8 9 oveq12d φ D - ˙ E = H A - ˙ H B
19 1 2 4 5 6 11 motcgr φ H A - ˙ H B = A - ˙ B
20 18 19 eqtr2d φ A - ˙ B = D - ˙ E
21 9 10 oveq12d φ E - ˙ F = H B - ˙ H C
22 1 2 4 6 7 11 motcgr φ H B - ˙ H C = B - ˙ C
23 21 22 eqtr2d φ B - ˙ C = E - ˙ F
24 10 8 oveq12d φ F - ˙ D = H C - ˙ H A
25 1 2 4 7 5 11 motcgr φ H C - ˙ H A = C - ˙ A
26 24 25 eqtr2d φ C - ˙ A = F - ˙ D
27 1 2 3 4 5 6 7 13 15 17 20 23 26 trgcgr φ ⟨“ ABC ”⟩ ˙ ⟨“ DEF ”⟩