Metamath Proof Explorer


Theorem motcgrg

Description: Property of a motion: distances are preserved. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses ismot.p P = Base G
ismot.m - ˙ = dist G
motgrp.1 φ G V
motgrp.i I = Base ndx G Ismt G + ndx f G Ismt G , g G Ismt G f g
motcgrg.r ˙ = 𝒢 G
motcgrg.t φ T Word P
motcgrg.f φ F G Ismt G
Assertion motcgrg φ F T ˙ T

Proof

Step Hyp Ref Expression
1 ismot.p P = Base G
2 ismot.m - ˙ = dist G
3 motgrp.1 φ G V
4 motgrp.i I = Base ndx G Ismt G + ndx f G Ismt G , g G Ismt G f g
5 motcgrg.r ˙ = 𝒢 G
6 motcgrg.t φ T Word P
7 motcgrg.f φ F G Ismt G
8 simpr φ n 0 T : 0 ..^ n P T : 0 ..^ n P
9 8 adantr φ n 0 T : 0 ..^ n P a dom F T b dom F T T : 0 ..^ n P
10 simprl φ n 0 T : 0 ..^ n P a dom F T b dom F T a dom F T
11 1 2 3 7 motf1o φ F : P 1-1 onto P
12 f1of F : P 1-1 onto P F : P P
13 11 12 syl φ F : P P
14 13 ad2antrr φ n 0 T : 0 ..^ n P F : P P
15 fco F : P P T : 0 ..^ n P F T : 0 ..^ n P
16 14 8 15 syl2anc φ n 0 T : 0 ..^ n P F T : 0 ..^ n P
17 16 adantr φ n 0 T : 0 ..^ n P a dom F T b dom F T F T : 0 ..^ n P
18 17 fdmd φ n 0 T : 0 ..^ n P a dom F T b dom F T dom F T = 0 ..^ n
19 10 18 eleqtrd φ n 0 T : 0 ..^ n P a dom F T b dom F T a 0 ..^ n
20 fvco3 T : 0 ..^ n P a 0 ..^ n F T a = F T a
21 9 19 20 syl2anc φ n 0 T : 0 ..^ n P a dom F T b dom F T F T a = F T a
22 simprr φ n 0 T : 0 ..^ n P a dom F T b dom F T b dom F T
23 22 18 eleqtrd φ n 0 T : 0 ..^ n P a dom F T b dom F T b 0 ..^ n
24 fvco3 T : 0 ..^ n P b 0 ..^ n F T b = F T b
25 9 23 24 syl2anc φ n 0 T : 0 ..^ n P a dom F T b dom F T F T b = F T b
26 21 25 oveq12d φ n 0 T : 0 ..^ n P a dom F T b dom F T F T a - ˙ F T b = F T a - ˙ F T b
27 3 ad2antrr φ n 0 T : 0 ..^ n P G V
28 27 adantr φ n 0 T : 0 ..^ n P a dom F T b dom F T G V
29 9 19 ffvelrnd φ n 0 T : 0 ..^ n P a dom F T b dom F T T a P
30 9 23 ffvelrnd φ n 0 T : 0 ..^ n P a dom F T b dom F T T b P
31 7 ad3antrrr φ n 0 T : 0 ..^ n P a dom F T b dom F T F G Ismt G
32 1 2 28 29 30 31 motcgr φ n 0 T : 0 ..^ n P a dom F T b dom F T F T a - ˙ F T b = T a - ˙ T b
33 26 32 eqtrd φ n 0 T : 0 ..^ n P a dom F T b dom F T F T a - ˙ F T b = T a - ˙ T b
34 33 ralrimivva φ n 0 T : 0 ..^ n P a dom F T b dom F T F T a - ˙ F T b = T a - ˙ T b
35 fzo0ssnn0 0 ..^ n 0
36 nn0ssre 0
37 35 36 sstri 0 ..^ n
38 37 a1i φ n 0 T : 0 ..^ n P 0 ..^ n
39 1 2 5 27 38 16 8 iscgrgd φ n 0 T : 0 ..^ n P F T ˙ T a dom F T b dom F T F T a - ˙ F T b = T a - ˙ T b
40 34 39 mpbird φ n 0 T : 0 ..^ n P F T ˙ T
41 iswrd T Word P n 0 T : 0 ..^ n P
42 6 41 sylib φ n 0 T : 0 ..^ n P
43 40 42 r19.29a φ F T ˙ T