Metamath Proof Explorer


Theorem motcl

Description: Closure of motions. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses ismot.p P = Base G
ismot.m - ˙ = dist G
motgrp.1 φ G V
motco.2 φ F G Ismt G
motcl.a φ A P
Assertion motcl φ F A P

Proof

Step Hyp Ref Expression
1 ismot.p P = Base G
2 ismot.m - ˙ = dist G
3 motgrp.1 φ G V
4 motco.2 φ F G Ismt G
5 motcl.a φ A P
6 1 2 3 4 motf1o φ F : P 1-1 onto P
7 f1of F : P 1-1 onto P F : P P
8 6 7 syl φ F : P P
9 8 5 ffvelrnd φ F A P