Metamath Proof Explorer


Theorem motf1o

Description: Motions are bijections. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses ismot.p P = Base G
ismot.m - ˙ = dist G
motgrp.1 φ G V
motco.2 φ F G Ismt G
Assertion motf1o φ F : P 1-1 onto P

Proof

Step Hyp Ref Expression
1 ismot.p P = Base G
2 ismot.m - ˙ = dist G
3 motgrp.1 φ G V
4 motco.2 φ F G Ismt G
5 1 2 ismot G V F G Ismt G F : P 1-1 onto P a P b P F a - ˙ F b = a - ˙ b
6 3 5 syl φ F G Ismt G F : P 1-1 onto P a P b P F a - ˙ F b = a - ˙ b
7 4 6 mpbid φ F : P 1-1 onto P a P b P F a - ˙ F b = a - ˙ b
8 7 simpld φ F : P 1-1 onto P