Database
ELEMENTARY GEOMETRY
Tarskian Geometry
Motions
motf1o
Next ⟩
motcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
motf1o
Description:
Motions are bijections.
(Contributed by
Thierry Arnoux
, 15-Dec-2019)
Ref
Expression
Hypotheses
ismot.p
⊢
P
=
Base
G
ismot.m
⊢
-
˙
=
dist
⁡
G
motgrp.1
⊢
φ
→
G
∈
V
motco.2
⊢
φ
→
F
∈
G
Ismt
G
Assertion
motf1o
⊢
φ
→
F
:
P
⟶
1-1 onto
P
Proof
Step
Hyp
Ref
Expression
1
ismot.p
⊢
P
=
Base
G
2
ismot.m
⊢
-
˙
=
dist
⁡
G
3
motgrp.1
⊢
φ
→
G
∈
V
4
motco.2
⊢
φ
→
F
∈
G
Ismt
G
5
1
2
ismot
⊢
G
∈
V
→
F
∈
G
Ismt
G
↔
F
:
P
⟶
1-1 onto
P
∧
∀
a
∈
P
∀
b
∈
P
F
⁡
a
-
˙
F
⁡
b
=
a
-
˙
b
6
3
5
syl
⊢
φ
→
F
∈
G
Ismt
G
↔
F
:
P
⟶
1-1 onto
P
∧
∀
a
∈
P
∀
b
∈
P
F
⁡
a
-
˙
F
⁡
b
=
a
-
˙
b
7
4
6
mpbid
⊢
φ
→
F
:
P
⟶
1-1 onto
P
∧
∀
a
∈
P
∀
b
∈
P
F
⁡
a
-
˙
F
⁡
b
=
a
-
˙
b
8
7
simpld
⊢
φ
→
F
:
P
⟶
1-1 onto
P