Metamath Proof Explorer


Theorem motgrp

Description: The motions of a geometry form a group with respect to function composition, called the Isometry group. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses ismot.p P = Base G
ismot.m - ˙ = dist G
motgrp.1 φ G V
motgrp.i I = Base ndx G Ismt G + ndx f G Ismt G , g G Ismt G f g
Assertion motgrp φ I Grp

Proof

Step Hyp Ref Expression
1 ismot.p P = Base G
2 ismot.m - ˙ = dist G
3 motgrp.1 φ G V
4 motgrp.i I = Base ndx G Ismt G + ndx f G Ismt G , g G Ismt G f g
5 ovex G Ismt G V
6 4 grpbase G Ismt G V G Ismt G = Base I
7 5 6 mp1i φ G Ismt G = Base I
8 eqidd φ + I = + I
9 3 3ad2ant1 φ f G Ismt G g G Ismt G G V
10 simp2 φ f G Ismt G g G Ismt G f G Ismt G
11 simp3 φ f G Ismt G g G Ismt G g G Ismt G
12 1 2 9 4 10 11 motplusg φ f G Ismt G g G Ismt G f + I g = f g
13 1 2 9 10 11 motco φ f G Ismt G g G Ismt G f g G Ismt G
14 12 13 eqeltrd φ f G Ismt G g G Ismt G f + I g G Ismt G
15 coass f g h = f g h
16 12 3adant3r3 φ f G Ismt G g G Ismt G h G Ismt G f + I g = f g
17 16 oveq1d φ f G Ismt G g G Ismt G h G Ismt G f + I g + I h = f g + I h
18 3 adantr φ f G Ismt G g G Ismt G h G Ismt G G V
19 13 3adant3r3 φ f G Ismt G g G Ismt G h G Ismt G f g G Ismt G
20 simpr3 φ f G Ismt G g G Ismt G h G Ismt G h G Ismt G
21 1 2 18 4 19 20 motplusg φ f G Ismt G g G Ismt G h G Ismt G f g + I h = f g h
22 17 21 eqtrd φ f G Ismt G g G Ismt G h G Ismt G f + I g + I h = f g h
23 simpr2 φ f G Ismt G g G Ismt G h G Ismt G g G Ismt G
24 1 2 18 4 23 20 motplusg φ f G Ismt G g G Ismt G h G Ismt G g + I h = g h
25 24 oveq2d φ f G Ismt G g G Ismt G h G Ismt G f + I g + I h = f + I g h
26 simpr1 φ f G Ismt G g G Ismt G h G Ismt G f G Ismt G
27 1 2 18 23 20 motco φ f G Ismt G g G Ismt G h G Ismt G g h G Ismt G
28 1 2 18 4 26 27 motplusg φ f G Ismt G g G Ismt G h G Ismt G f + I g h = f g h
29 25 28 eqtrd φ f G Ismt G g G Ismt G h G Ismt G f + I g + I h = f g h
30 15 22 29 3eqtr4a φ f G Ismt G g G Ismt G h G Ismt G f + I g + I h = f + I g + I h
31 1 2 3 idmot φ I P G Ismt G
32 3 adantr φ f G Ismt G G V
33 31 adantr φ f G Ismt G I P G Ismt G
34 simpr φ f G Ismt G f G Ismt G
35 1 2 32 4 33 34 motplusg φ f G Ismt G I P + I f = I P f
36 1 2 ismot G V f G Ismt G f : P 1-1 onto P a P b P f a - ˙ f b = a - ˙ b
37 36 simprbda G V f G Ismt G f : P 1-1 onto P
38 3 37 sylan φ f G Ismt G f : P 1-1 onto P
39 f1of f : P 1-1 onto P f : P P
40 fcoi2 f : P P I P f = f
41 38 39 40 3syl φ f G Ismt G I P f = f
42 35 41 eqtrd φ f G Ismt G I P + I f = f
43 1 2 32 34 cnvmot φ f G Ismt G f -1 G Ismt G
44 1 2 32 4 43 34 motplusg φ f G Ismt G f -1 + I f = f -1 f
45 f1ococnv1 f : P 1-1 onto P f -1 f = I P
46 38 45 syl φ f G Ismt G f -1 f = I P
47 44 46 eqtrd φ f G Ismt G f -1 + I f = I P
48 7 8 14 30 31 42 43 47 isgrpd φ I Grp