Metamath Proof Explorer


Theorem mp2pm2mplem2

Description: Lemma 2 for mp2pm2mp . (Contributed by AV, 10-Oct-2019) (Revised by AV, 5-Dec-2019)

Ref Expression
Hypotheses mp2pm2mp.a A = N Mat R
mp2pm2mp.q Q = Poly 1 A
mp2pm2mp.l L = Base Q
mp2pm2mp.m · ˙ = P
mp2pm2mp.e E = mulGrp P
mp2pm2mp.y Y = var 1 R
mp2pm2mp.i I = p L i N , j N P k 0 i coe 1 p k j · ˙ k E Y
mp2pm2mplem2.p P = Poly 1 R
mp2pm2mplem2.c C = N Mat P
mp2pm2mplem2.b B = Base C
Assertion mp2pm2mplem2 N Fin R Ring O L i N , j N P k 0 i coe 1 O k j · ˙ k E Y B

Proof

Step Hyp Ref Expression
1 mp2pm2mp.a A = N Mat R
2 mp2pm2mp.q Q = Poly 1 A
3 mp2pm2mp.l L = Base Q
4 mp2pm2mp.m · ˙ = P
5 mp2pm2mp.e E = mulGrp P
6 mp2pm2mp.y Y = var 1 R
7 mp2pm2mp.i I = p L i N , j N P k 0 i coe 1 p k j · ˙ k E Y
8 mp2pm2mplem2.p P = Poly 1 R
9 mp2pm2mplem2.c C = N Mat P
10 mp2pm2mplem2.b B = Base C
11 eqid Base P = Base P
12 simp1 N Fin R Ring O L N Fin
13 8 ply1ring R Ring P Ring
14 13 3ad2ant2 N Fin R Ring O L P Ring
15 eqid 0 P = 0 P
16 ringcmn P Ring P CMnd
17 13 16 syl R Ring P CMnd
18 17 3ad2ant2 N Fin R Ring O L P CMnd
19 18 3ad2ant1 N Fin R Ring O L i N j N P CMnd
20 nn0ex 0 V
21 20 a1i N Fin R Ring O L i N j N 0 V
22 simpl12 N Fin R Ring O L i N j N k 0 R Ring
23 eqid Base R = Base R
24 eqid Base A = Base A
25 simpl2 N Fin R Ring O L i N j N k 0 i N
26 simpl3 N Fin R Ring O L i N j N k 0 j N
27 simp13 N Fin R Ring O L i N j N O L
28 eqid coe 1 O = coe 1 O
29 28 3 2 24 coe1fvalcl O L k 0 coe 1 O k Base A
30 27 29 sylan N Fin R Ring O L i N j N k 0 coe 1 O k Base A
31 1 23 24 25 26 30 matecld N Fin R Ring O L i N j N k 0 i coe 1 O k j Base R
32 simpr N Fin R Ring O L i N j N k 0 k 0
33 eqid mulGrp P = mulGrp P
34 23 8 6 4 33 5 11 ply1tmcl R Ring i coe 1 O k j Base R k 0 i coe 1 O k j · ˙ k E Y Base P
35 22 31 32 34 syl3anc N Fin R Ring O L i N j N k 0 i coe 1 O k j · ˙ k E Y Base P
36 35 fmpttd N Fin R Ring O L i N j N k 0 i coe 1 O k j · ˙ k E Y : 0 Base P
37 1 2 3 8 4 5 6 mply1topmatcllem N Fin R Ring O L i N j N finSupp 0 P k 0 i coe 1 O k j · ˙ k E Y
38 11 15 19 21 36 37 gsumcl N Fin R Ring O L i N j N P k 0 i coe 1 O k j · ˙ k E Y Base P
39 9 11 10 12 14 38 matbas2d N Fin R Ring O L i N , j N P k 0 i coe 1 O k j · ˙ k E Y B