Step |
Hyp |
Ref |
Expression |
1 |
|
mp2pm2mp.a |
|
2 |
|
mp2pm2mp.q |
|
3 |
|
mp2pm2mp.l |
|
4 |
|
mp2pm2mp.m |
|
5 |
|
mp2pm2mp.e |
|
6 |
|
mp2pm2mp.y |
|
7 |
|
mp2pm2mp.i |
|
8 |
|
mp2pm2mplem2.p |
|
9 |
|
mp2pm2mplem2.c |
|
10 |
|
mp2pm2mplem2.b |
|
11 |
|
eqid |
|
12 |
|
simp1 |
|
13 |
8
|
ply1ring |
|
14 |
13
|
3ad2ant2 |
|
15 |
|
eqid |
|
16 |
|
ringcmn |
|
17 |
13 16
|
syl |
|
18 |
17
|
3ad2ant2 |
|
19 |
18
|
3ad2ant1 |
|
20 |
|
nn0ex |
|
21 |
20
|
a1i |
|
22 |
|
simpl12 |
|
23 |
|
eqid |
|
24 |
|
eqid |
|
25 |
|
simpl2 |
|
26 |
|
simpl3 |
|
27 |
|
simp13 |
|
28 |
|
eqid |
|
29 |
28 3 2 24
|
coe1fvalcl |
|
30 |
27 29
|
sylan |
|
31 |
1 23 24 25 26 30
|
matecld |
|
32 |
|
simpr |
|
33 |
|
eqid |
|
34 |
23 8 6 4 33 5 11
|
ply1tmcl |
|
35 |
22 31 32 34
|
syl3anc |
|
36 |
35
|
fmpttd |
|
37 |
1 2 3 8 4 5 6
|
mply1topmatcllem |
|
38 |
11 15 19 21 36 37
|
gsumcl |
|
39 |
9 11 10 12 14 38
|
matbas2d |
|