Step |
Hyp |
Ref |
Expression |
1 |
|
mp2pm2mp.a |
|
2 |
|
mp2pm2mp.q |
|
3 |
|
mp2pm2mp.l |
|
4 |
|
mp2pm2mp.m |
|
5 |
|
mp2pm2mp.e |
|
6 |
|
mp2pm2mp.y |
|
7 |
|
mp2pm2mp.i |
|
8 |
|
mp2pm2mplem2.p |
|
9 |
1 2 3 4 5 6 7
|
mp2pm2mplem1 |
|
10 |
9
|
oveq1d |
|
11 |
10
|
adantr |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
1 2 3 4 5 6 7 8 12 13
|
mp2pm2mplem2 |
|
15 |
12 13
|
decpmatval |
|
16 |
14 15
|
sylan |
|
17 |
|
eqidd |
|
18 |
|
oveq12 |
|
19 |
18
|
oveq1d |
|
20 |
19
|
mpteq2dv |
|
21 |
20
|
oveq2d |
|
22 |
21
|
adantl |
|
23 |
|
simp2 |
|
24 |
|
simp3 |
|
25 |
|
ovexd |
|
26 |
17 22 23 24 25
|
ovmpod |
|
27 |
26
|
fveq2d |
|
28 |
27
|
fveq1d |
|
29 |
28
|
mpoeq3dva |
|
30 |
|
oveq1 |
|
31 |
30
|
oveq1d |
|
32 |
31
|
mpteq2dv |
|
33 |
32
|
oveq2d |
|
34 |
33
|
fveq2d |
|
35 |
34
|
fveq1d |
|
36 |
|
simpl |
|
37 |
36
|
oveq2d |
|
38 |
37
|
oveq1d |
|
39 |
38
|
mpteq2dva |
|
40 |
39
|
oveq2d |
|
41 |
40
|
fveq2d |
|
42 |
41
|
fveq1d |
|
43 |
35 42
|
cbvmpov |
|
44 |
29 43
|
eqtrdi |
|
45 |
11 16 44
|
3eqtrd |
|