Step |
Hyp |
Ref |
Expression |
1 |
|
mp2pm2mp.a |
|
2 |
|
mp2pm2mp.q |
|
3 |
|
mp2pm2mp.l |
|
4 |
|
mp2pm2mp.m |
|
5 |
|
mp2pm2mp.e |
|
6 |
|
mp2pm2mp.y |
|
7 |
|
mp2pm2mp.i |
|
8 |
|
mp2pm2mplem2.p |
|
9 |
|
mp2pm2mplem5.m |
|
10 |
|
mp2pm2mplem5.e |
|
11 |
|
mp2pm2mplem5.x |
|
12 |
|
nn0ex |
|
13 |
12
|
a1i |
|
14 |
1
|
matring |
|
15 |
2
|
ply1lmod |
|
16 |
14 15
|
syl |
|
17 |
16
|
3adant3 |
|
18 |
14
|
3adant3 |
|
19 |
2
|
ply1sca |
|
20 |
18 19
|
syl |
|
21 |
|
simpl2 |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
1 2 3 8 4 5 6 7 22 23
|
mply1topmatcl |
|
25 |
24
|
adantr |
|
26 |
|
simpr |
|
27 |
|
eqid |
|
28 |
8 22 23 1 27
|
decpmatcl |
|
29 |
21 25 26 28
|
syl3anc |
|
30 |
|
eqid |
|
31 |
2 11 30 10 3
|
ply1moncl |
|
32 |
18 31
|
sylan |
|
33 |
|
eqid |
|
34 |
|
eqid |
|
35 |
|
fveq2 |
|
36 |
35
|
oveqd |
|
37 |
|
oveq1 |
|
38 |
36 37
|
oveq12d |
|
39 |
38
|
cbvmptv |
|
40 |
39
|
oveq2i |
|
41 |
40
|
a1i |
|
42 |
41
|
mpoeq3ia |
|
43 |
42
|
mpteq2i |
|
44 |
7 43
|
eqtri |
|
45 |
1 2 3 4 5 6 44 8
|
mp2pm2mplem4 |
|
46 |
45
|
mpteq2dva |
|
47 |
2 3 34
|
mptcoe1fsupp |
|
48 |
14 47
|
stoic3 |
|
49 |
46 48
|
eqbrtrd |
|
50 |
13 17 20 3 29 32 33 34 9 49
|
mptscmfsupp0 |
|