Metamath Proof Explorer


Theorem mp2pm2mplem5

Description: Lemma 5 for mp2pm2mp . (Contributed by AV, 12-Oct-2019) (Revised by AV, 5-Dec-2019)

Ref Expression
Hypotheses mp2pm2mp.a A = N Mat R
mp2pm2mp.q Q = Poly 1 A
mp2pm2mp.l L = Base Q
mp2pm2mp.m · ˙ = P
mp2pm2mp.e E = mulGrp P
mp2pm2mp.y Y = var 1 R
mp2pm2mp.i I = p L i N , j N P k 0 i coe 1 p k j · ˙ k E Y
mp2pm2mplem2.p P = Poly 1 R
mp2pm2mplem5.m ˙ = Q
mp2pm2mplem5.e × ˙ = mulGrp Q
mp2pm2mplem5.x X = var 1 A
Assertion mp2pm2mplem5 N Fin R Ring O L finSupp 0 Q k 0 I O decompPMat k ˙ k × ˙ X

Proof

Step Hyp Ref Expression
1 mp2pm2mp.a A = N Mat R
2 mp2pm2mp.q Q = Poly 1 A
3 mp2pm2mp.l L = Base Q
4 mp2pm2mp.m · ˙ = P
5 mp2pm2mp.e E = mulGrp P
6 mp2pm2mp.y Y = var 1 R
7 mp2pm2mp.i I = p L i N , j N P k 0 i coe 1 p k j · ˙ k E Y
8 mp2pm2mplem2.p P = Poly 1 R
9 mp2pm2mplem5.m ˙ = Q
10 mp2pm2mplem5.e × ˙ = mulGrp Q
11 mp2pm2mplem5.x X = var 1 A
12 nn0ex 0 V
13 12 a1i N Fin R Ring O L 0 V
14 1 matring N Fin R Ring A Ring
15 2 ply1lmod A Ring Q LMod
16 14 15 syl N Fin R Ring Q LMod
17 16 3adant3 N Fin R Ring O L Q LMod
18 14 3adant3 N Fin R Ring O L A Ring
19 2 ply1sca A Ring A = Scalar Q
20 18 19 syl N Fin R Ring O L A = Scalar Q
21 simpl2 N Fin R Ring O L k 0 R Ring
22 eqid N Mat P = N Mat P
23 eqid Base N Mat P = Base N Mat P
24 1 2 3 8 4 5 6 7 22 23 mply1topmatcl N Fin R Ring O L I O Base N Mat P
25 24 adantr N Fin R Ring O L k 0 I O Base N Mat P
26 simpr N Fin R Ring O L k 0 k 0
27 eqid Base A = Base A
28 8 22 23 1 27 decpmatcl R Ring I O Base N Mat P k 0 I O decompPMat k Base A
29 21 25 26 28 syl3anc N Fin R Ring O L k 0 I O decompPMat k Base A
30 eqid mulGrp Q = mulGrp Q
31 2 11 30 10 3 ply1moncl A Ring k 0 k × ˙ X L
32 18 31 sylan N Fin R Ring O L k 0 k × ˙ X L
33 eqid 0 Q = 0 Q
34 eqid 0 A = 0 A
35 fveq2 k = l coe 1 p k = coe 1 p l
36 35 oveqd k = l i coe 1 p k j = i coe 1 p l j
37 oveq1 k = l k E Y = l E Y
38 36 37 oveq12d k = l i coe 1 p k j · ˙ k E Y = i coe 1 p l j · ˙ l E Y
39 38 cbvmptv k 0 i coe 1 p k j · ˙ k E Y = l 0 i coe 1 p l j · ˙ l E Y
40 39 oveq2i P k 0 i coe 1 p k j · ˙ k E Y = P l 0 i coe 1 p l j · ˙ l E Y
41 40 a1i i N j N P k 0 i coe 1 p k j · ˙ k E Y = P l 0 i coe 1 p l j · ˙ l E Y
42 41 mpoeq3ia i N , j N P k 0 i coe 1 p k j · ˙ k E Y = i N , j N P l 0 i coe 1 p l j · ˙ l E Y
43 42 mpteq2i p L i N , j N P k 0 i coe 1 p k j · ˙ k E Y = p L i N , j N P l 0 i coe 1 p l j · ˙ l E Y
44 7 43 eqtri I = p L i N , j N P l 0 i coe 1 p l j · ˙ l E Y
45 1 2 3 4 5 6 44 8 mp2pm2mplem4 N Fin R Ring O L k 0 I O decompPMat k = coe 1 O k
46 45 mpteq2dva N Fin R Ring O L k 0 I O decompPMat k = k 0 coe 1 O k
47 2 3 34 mptcoe1fsupp A Ring O L finSupp 0 A k 0 coe 1 O k
48 14 47 stoic3 N Fin R Ring O L finSupp 0 A k 0 coe 1 O k
49 46 48 eqbrtrd N Fin R Ring O L finSupp 0 A k 0 I O decompPMat k
50 13 17 20 3 29 32 33 34 9 49 mptscmfsupp0 N Fin R Ring O L finSupp 0 Q k 0 I O decompPMat k ˙ k × ˙ X