Metamath Proof Explorer


Theorem mp3an12i

Description: mp3an with antecedents in standard conjunction form and with one hypothesis an implication. (Contributed by Alan Sare, 28-Aug-2016)

Ref Expression
Hypotheses mp3an12i.1 φ
mp3an12i.2 ψ
mp3an12i.3 χ θ
mp3an12i.4 φ ψ θ τ
Assertion mp3an12i χ τ

Proof

Step Hyp Ref Expression
1 mp3an12i.1 φ
2 mp3an12i.2 ψ
3 mp3an12i.3 χ θ
4 mp3an12i.4 φ ψ θ τ
5 1 2 4 mp3an12 θ τ
6 3 5 syl χ τ