Metamath Proof Explorer


Theorem mp3an2ani

Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017)

Ref Expression
Hypotheses mp3an2ani.1 φ
mp3an2ani.2 ψ χ
mp3an2ani.3 ψ θ τ
mp3an2ani.4 φ χ τ η
Assertion mp3an2ani ψ θ η

Proof

Step Hyp Ref Expression
1 mp3an2ani.1 φ
2 mp3an2ani.2 ψ χ
3 mp3an2ani.3 ψ θ τ
4 mp3an2ani.4 φ χ τ η
5 1 2 3 4 mp3an3an ψ ψ θ η
6 5 anabss5 ψ θ η