Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Propositional calculus
Abbreviated conjunction and disjunction of three wff's
mp3an2i
Metamath Proof Explorer
Description: mp3an with antecedents in standard conjunction form and with two
hypotheses which are implications. (Contributed by Alan Sare , 28-Aug-2016)
Ref
Expression
Hypotheses
mp3an2i.1
⊢ φ
mp3an2i.2
⊢ ψ → χ
mp3an2i.3
⊢ ψ → θ
mp3an2i.4
⊢ φ ∧ χ ∧ θ → τ
Assertion
mp3an2i
⊢ ψ → τ
Proof
Step
Hyp
Ref
Expression
1
mp3an2i.1
⊢ φ
2
mp3an2i.2
⊢ ψ → χ
3
mp3an2i.3
⊢ ψ → θ
4
mp3an2i.4
⊢ φ ∧ χ ∧ θ → τ
5
1 4
mp3an1
⊢ χ ∧ θ → τ
6
2 3 5
syl2anc
⊢ ψ → τ