Metamath Proof Explorer


Theorem mp3an2i

Description: mp3an with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016)

Ref Expression
Hypotheses mp3an2i.1 φ
mp3an2i.2 ψ χ
mp3an2i.3 ψ θ
mp3an2i.4 φ χ θ τ
Assertion mp3an2i ψ τ

Proof

Step Hyp Ref Expression
1 mp3an2i.1 φ
2 mp3an2i.2 ψ χ
3 mp3an2i.3 ψ θ
4 mp3an2i.4 φ χ θ τ
5 1 4 mp3an1 χ θ τ
6 2 3 5 syl2anc ψ τ