Metamath Proof Explorer


Theorem mpbiran3d

Description: Equivalence with a conjunction one of whose conjuncts is a consequence of the other. Deduction form. (Contributed by Zhi Wang, 24-Sep-2024)

Ref Expression
Hypotheses mpbiran3d.1 φ ψ χ θ
mpbiran3d.2 φ χ θ
Assertion mpbiran3d φ ψ χ

Proof

Step Hyp Ref Expression
1 mpbiran3d.1 φ ψ χ θ
2 mpbiran3d.2 φ χ θ
3 1 simprbda φ ψ χ
4 3 ex φ ψ χ
5 2 ex φ χ θ
6 5 ancld φ χ χ θ
7 6 1 sylibrd φ χ ψ
8 4 7 impbid φ ψ χ