Metamath Proof Explorer


Theorem mpet3

Description: Member Partition-Equivalence Theorem. Together with mpet mpet2 , mostly in its conventional cpet and cpet2 form, this is what we used to think of as the partition equivalence theorem (but cf. pet2 with general R ). (Contributed by Peter Mazsa, 4-May-2018) (Revised by Peter Mazsa, 26-Sep-2021)

Ref Expression
Assertion mpet3 ElDisj A ¬ A CoElEqvRel A A / A = A

Proof

Step Hyp Ref Expression
1 eldisjn0elb ElDisj A ¬ A Disj E -1 A dom E -1 A / E -1 A = A
2 eqvrelqseqdisj3 EqvRel E -1 A dom E -1 A / E -1 A = A Disj E -1 A
3 2 petlem Disj E -1 A dom E -1 A / E -1 A = A EqvRel E -1 A dom E -1 A / E -1 A = A
4 eqvreldmqs EqvRel E -1 A dom E -1 A / E -1 A = A CoElEqvRel A A / A = A
5 1 3 4 3bitri ElDisj A ¬ A CoElEqvRel A A / A = A