Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Partition-Equivalence Theorems
mpet3
Metamath Proof Explorer
Description: Member Partition-Equivalence Theorem. Together with mpet mpet2 ,
mostly in its conventional cpet and cpet2 form, this is what we used
to think of as the partition equivalence theorem (but cf. pet2 with
general R ). (Contributed by Peter Mazsa , 4-May-2018) (Revised by Peter Mazsa , 26-Sep-2021)
Ref
Expression
Assertion
mpet3
⊢ ElDisj A ∧ ¬ ∅ ∈ A ↔ CoElEqvRel A ∧ ⋃ A / ∼ A = A
Proof
Step
Hyp
Ref
Expression
1
eldisjn0elb
⊢ ElDisj A ∧ ¬ ∅ ∈ A ↔ Disj E -1 ↾ A ∧ dom ⁡ E -1 ↾ A / E -1 ↾ A = A
2
eqvrelqseqdisj3
⊢ EqvRel ≀ E -1 ↾ A ∧ dom ⁡ ≀ E -1 ↾ A / ≀ E -1 ↾ A = A → Disj E -1 ↾ A
3
2
petlem
⊢ Disj E -1 ↾ A ∧ dom ⁡ E -1 ↾ A / E -1 ↾ A = A ↔ EqvRel ≀ E -1 ↾ A ∧ dom ⁡ ≀ E -1 ↾ A / ≀ E -1 ↾ A = A
4
eqvreldmqs
⊢ EqvRel ≀ E -1 ↾ A ∧ dom ⁡ ≀ E -1 ↾ A / ≀ E -1 ↾ A = A ↔ CoElEqvRel A ∧ ⋃ A / ∼ A = A
5
1 3 4
3bitri
⊢ ElDisj A ∧ ¬ ∅ ∈ A ↔ CoElEqvRel A ∧ ⋃ A / ∼ A = A