Metamath Proof Explorer


Theorem mpets2

Description: Member Partition-Equivalence Theorem with binary relations, cf. mpet2 . (Contributed by Peter Mazsa, 24-Sep-2021)

Ref Expression
Assertion mpets2 Could not format assertion : No typesetting found for |- ( A e. V -> ( ( `' _E |` A ) Parts A <-> ,~ ( `' _E |` A ) Ers A ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 mpet2 Could not format ( ( `' _E |` A ) Part A <-> ,~ ( `' _E |` A ) ErALTV A ) : No typesetting found for |- ( ( `' _E |` A ) Part A <-> ,~ ( `' _E |` A ) ErALTV A ) with typecode |-
2 cnvepresex A V E -1 A V
3 brpartspart Could not format ( ( A e. V /\ ( `' _E |` A ) e. _V ) -> ( ( `' _E |` A ) Parts A <-> ( `' _E |` A ) Part A ) ) : No typesetting found for |- ( ( A e. V /\ ( `' _E |` A ) e. _V ) -> ( ( `' _E |` A ) Parts A <-> ( `' _E |` A ) Part A ) ) with typecode |-
4 2 3 mpdan Could not format ( A e. V -> ( ( `' _E |` A ) Parts A <-> ( `' _E |` A ) Part A ) ) : No typesetting found for |- ( A e. V -> ( ( `' _E |` A ) Parts A <-> ( `' _E |` A ) Part A ) ) with typecode |-
5 1cosscnvepresex A V E -1 A V
6 brerser A V E -1 A V E -1 A Ers A E -1 A ErALTV A
7 5 6 mpdan A V E -1 A Ers A E -1 A ErALTV A
8 4 7 bibi12d Could not format ( A e. V -> ( ( ( `' _E |` A ) Parts A <-> ,~ ( `' _E |` A ) Ers A ) <-> ( ( `' _E |` A ) Part A <-> ,~ ( `' _E |` A ) ErALTV A ) ) ) : No typesetting found for |- ( A e. V -> ( ( ( `' _E |` A ) Parts A <-> ,~ ( `' _E |` A ) Ers A ) <-> ( ( `' _E |` A ) Part A <-> ,~ ( `' _E |` A ) ErALTV A ) ) ) with typecode |-
9 1 8 mpbiri Could not format ( A e. V -> ( ( `' _E |` A ) Parts A <-> ,~ ( `' _E |` A ) Ers A ) ) : No typesetting found for |- ( A e. V -> ( ( `' _E |` A ) Parts A <-> ,~ ( `' _E |` A ) Ers A ) ) with typecode |-