Step |
Hyp |
Ref |
Expression |
1 |
|
mpfsubrg.q |
|
2 |
|
mpfaddcl.p |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
1
|
mpfrcl |
|
6 |
5
|
adantr |
|
7 |
6
|
simp2d |
|
8 |
|
ovexd |
|
9 |
1
|
mpfsubrg |
|
10 |
6 9
|
syl |
|
11 |
4
|
subrgss |
|
12 |
10 11
|
syl |
|
13 |
|
simpl |
|
14 |
12 13
|
sseldd |
|
15 |
|
simpr |
|
16 |
12 15
|
sseldd |
|
17 |
|
eqid |
|
18 |
3 4 7 8 14 16 2 17
|
pwsplusgval |
|
19 |
17
|
subrgacl |
|
20 |
19
|
3expib |
|
21 |
10 20
|
mpcom |
|
22 |
18 21
|
eqeltrrd |
|