Metamath Proof Explorer


Theorem mpfaddcl

Description: The sum of multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypotheses mpfsubrg.q Q = ran I evalSub S R
mpfaddcl.p + ˙ = + S
Assertion mpfaddcl F Q G Q F + ˙ f G Q

Proof

Step Hyp Ref Expression
1 mpfsubrg.q Q = ran I evalSub S R
2 mpfaddcl.p + ˙ = + S
3 eqid S 𝑠 Base S I = S 𝑠 Base S I
4 eqid Base S 𝑠 Base S I = Base S 𝑠 Base S I
5 1 mpfrcl F Q I V S CRing R SubRing S
6 5 adantr F Q G Q I V S CRing R SubRing S
7 6 simp2d F Q G Q S CRing
8 ovexd F Q G Q Base S I V
9 1 mpfsubrg I V S CRing R SubRing S Q SubRing S 𝑠 Base S I
10 6 9 syl F Q G Q Q SubRing S 𝑠 Base S I
11 4 subrgss Q SubRing S 𝑠 Base S I Q Base S 𝑠 Base S I
12 10 11 syl F Q G Q Q Base S 𝑠 Base S I
13 simpl F Q G Q F Q
14 12 13 sseldd F Q G Q F Base S 𝑠 Base S I
15 simpr F Q G Q G Q
16 12 15 sseldd F Q G Q G Base S 𝑠 Base S I
17 eqid + S 𝑠 Base S I = + S 𝑠 Base S I
18 3 4 7 8 14 16 2 17 pwsplusgval F Q G Q F + S 𝑠 Base S I G = F + ˙ f G
19 17 subrgacl Q SubRing S 𝑠 Base S I F Q G Q F + S 𝑠 Base S I G Q
20 19 3expib Q SubRing S 𝑠 Base S I F Q G Q F + S 𝑠 Base S I G Q
21 10 20 mpcom F Q G Q F + S 𝑠 Base S I G Q
22 18 21 eqeltrrd F Q G Q F + ˙ f G Q