Metamath Proof Explorer


Theorem mpff

Description: Polynomial functions are functions. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypotheses mpfsubrg.q Q = ran I evalSub S R
mpff.b B = Base S
Assertion mpff F Q F : B I B

Proof

Step Hyp Ref Expression
1 mpfsubrg.q Q = ran I evalSub S R
2 mpff.b B = Base S
3 2 eqcomi Base S = B
4 3 oveq1i Base S I = B I
5 4 oveq2i S 𝑠 Base S I = S 𝑠 B I
6 eqid Base S 𝑠 Base S I = Base S 𝑠 Base S I
7 1 mpfrcl F Q I V S CRing R SubRing S
8 7 simp2d F Q S CRing
9 ovexd F Q B I V
10 1 mpfsubrg I V S CRing R SubRing S Q SubRing S 𝑠 Base S I
11 6 subrgss Q SubRing S 𝑠 Base S I Q Base S 𝑠 Base S I
12 7 10 11 3syl F Q Q Base S 𝑠 Base S I
13 id F Q F Q
14 12 13 sseldd F Q F Base S 𝑠 Base S I
15 5 2 6 8 9 14 pwselbas F Q F : B I B