Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Polynomial evaluation
mpff
Next ⟩
mpfaddcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
mpff
Description:
Polynomial functions are functions.
(Contributed by
Mario Carneiro
, 19-Mar-2015)
Ref
Expression
Hypotheses
mpfsubrg.q
⊢
Q
=
ran
⁡
I
evalSub
S
⁡
R
mpff.b
⊢
B
=
Base
S
Assertion
mpff
⊢
F
∈
Q
→
F
:
B
I
⟶
B
Proof
Step
Hyp
Ref
Expression
1
mpfsubrg.q
⊢
Q
=
ran
⁡
I
evalSub
S
⁡
R
2
mpff.b
⊢
B
=
Base
S
3
2
eqcomi
⊢
Base
S
=
B
4
3
oveq1i
⊢
Base
S
I
=
B
I
5
4
oveq2i
⊢
S
↑
𝑠
Base
S
I
=
S
↑
𝑠
B
I
6
eqid
⊢
Base
S
↑
𝑠
Base
S
I
=
Base
S
↑
𝑠
Base
S
I
7
1
mpfrcl
⊢
F
∈
Q
→
I
∈
V
∧
S
∈
CRing
∧
R
∈
SubRing
⁡
S
8
7
simp2d
⊢
F
∈
Q
→
S
∈
CRing
9
ovexd
⊢
F
∈
Q
→
B
I
∈
V
10
1
mpfsubrg
⊢
I
∈
V
∧
S
∈
CRing
∧
R
∈
SubRing
⁡
S
→
Q
∈
SubRing
⁡
S
↑
𝑠
Base
S
I
11
6
subrgss
⊢
Q
∈
SubRing
⁡
S
↑
𝑠
Base
S
I
→
Q
⊆
Base
S
↑
𝑠
Base
S
I
12
7
10
11
3syl
⊢
F
∈
Q
→
Q
⊆
Base
S
↑
𝑠
Base
S
I
13
id
⊢
F
∈
Q
→
F
∈
Q
14
12
13
sseldd
⊢
F
∈
Q
→
F
∈
Base
S
↑
𝑠
Base
S
I
15
5
2
6
8
9
14
pwselbas
⊢
F
∈
Q
→
F
:
B
I
⟶
B