Step |
Hyp |
Ref |
Expression |
1 |
|
mpfind.cb |
|
2 |
|
mpfind.cp |
|
3 |
|
mpfind.ct |
|
4 |
|
mpfind.cq |
|
5 |
|
mpfind.ad |
|
6 |
|
mpfind.mu |
|
7 |
|
mpfind.wa |
|
8 |
|
mpfind.wb |
|
9 |
|
mpfind.wc |
|
10 |
|
mpfind.wd |
|
11 |
|
mpfind.we |
|
12 |
|
mpfind.wf |
|
13 |
|
mpfind.wg |
|
14 |
|
mpfind.co |
|
15 |
|
mpfind.pr |
|
16 |
|
mpfind.a |
|
17 |
16 4
|
eleqtrdi |
|
18 |
4
|
mpfrcl |
|
19 |
16 18
|
syl |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
20 21 22 23 1
|
evlsrhm |
|
25 |
|
eqid |
|
26 |
|
eqid |
|
27 |
25 26
|
rhmf |
|
28 |
19 24 27
|
3syl |
|
29 |
28
|
ffnd |
|
30 |
|
fvelrnb |
|
31 |
29 30
|
syl |
|
32 |
17 31
|
mpbid |
|
33 |
28
|
ffund |
|
34 |
|
eqid |
|
35 |
|
eqid |
|
36 |
|
eqid |
|
37 |
|
eqid |
|
38 |
|
eqid |
|
39 |
19
|
simp1d |
|
40 |
19
|
simp2d |
|
41 |
19
|
simp3d |
|
42 |
22
|
subrgcrng |
|
43 |
40 41 42
|
syl2anc |
|
44 |
|
crngring |
|
45 |
43 44
|
syl |
|
46 |
21 39 45
|
mplringd |
|
47 |
46
|
adantr |
|
48 |
|
simprl |
|
49 |
|
elpreima |
|
50 |
29 49
|
syl |
|
51 |
50
|
adantr |
|
52 |
48 51
|
mpbid |
|
53 |
52
|
simpld |
|
54 |
|
simprr |
|
55 |
|
elpreima |
|
56 |
29 55
|
syl |
|
57 |
56
|
adantr |
|
58 |
54 57
|
mpbid |
|
59 |
58
|
simpld |
|
60 |
25 36
|
ringacl |
|
61 |
47 53 59 60
|
syl3anc |
|
62 |
|
rhmghm |
|
63 |
19 24 62
|
3syl |
|
64 |
63
|
adantr |
|
65 |
|
eqid |
|
66 |
25 36 65
|
ghmlin |
|
67 |
64 53 59 66
|
syl3anc |
|
68 |
40
|
adantr |
|
69 |
|
ovexd |
|
70 |
28
|
adantr |
|
71 |
70 53
|
ffvelcdmd |
|
72 |
70 59
|
ffvelcdmd |
|
73 |
23 26 68 69 71 72 2 65
|
pwsplusgval |
|
74 |
67 73
|
eqtrd |
|
75 |
|
simpl |
|
76 |
|
fnfvelrn |
|
77 |
29 53 76
|
syl2an2r |
|
78 |
77 4
|
eleqtrrdi |
|
79 |
|
fvimacnvi |
|
80 |
33 48 79
|
syl2an2r |
|
81 |
78 80
|
jca |
|
82 |
|
fnfvelrn |
|
83 |
29 59 82
|
syl2an2r |
|
84 |
83 4
|
eleqtrrdi |
|
85 |
|
fvimacnvi |
|
86 |
33 54 85
|
syl2an2r |
|
87 |
84 86
|
jca |
|
88 |
|
fvex |
|
89 |
|
fvex |
|
90 |
|
eleq1 |
|
91 |
|
vex |
|
92 |
91 9
|
elab |
|
93 |
|
eleq1 |
|
94 |
92 93
|
bitr3id |
|
95 |
90 94
|
anbi12d |
|
96 |
|
eleq1 |
|
97 |
|
vex |
|
98 |
97 10
|
elab |
|
99 |
|
eleq1 |
|
100 |
98 99
|
bitr3id |
|
101 |
96 100
|
anbi12d |
|
102 |
95 101
|
bi2anan9 |
|
103 |
102
|
anbi2d |
|
104 |
|
ovex |
|
105 |
104 11
|
elab |
|
106 |
|
oveq12 |
|
107 |
106
|
eleq1d |
|
108 |
105 107
|
bitr3id |
|
109 |
103 108
|
imbi12d |
|
110 |
88 89 109 5
|
vtocl2 |
|
111 |
75 81 87 110
|
syl12anc |
|
112 |
74 111
|
eqeltrd |
|
113 |
|
elpreima |
|
114 |
29 113
|
syl |
|
115 |
114
|
adantr |
|
116 |
61 112 115
|
mpbir2and |
|
117 |
116
|
adantlr |
|
118 |
25 37
|
ringcl |
|
119 |
47 53 59 118
|
syl3anc |
|
120 |
|
eqid |
|
121 |
|
eqid |
|
122 |
120 121
|
rhmmhm |
|
123 |
19 24 122
|
3syl |
|
124 |
123
|
adantr |
|
125 |
120 25
|
mgpbas |
|
126 |
120 37
|
mgpplusg |
|
127 |
|
eqid |
|
128 |
121 127
|
mgpplusg |
|
129 |
125 126 128
|
mhmlin |
|
130 |
124 53 59 129
|
syl3anc |
|
131 |
23 26 68 69 71 72 3 127
|
pwsmulrval |
|
132 |
130 131
|
eqtrd |
|
133 |
|
ovex |
|
134 |
133 12
|
elab |
|
135 |
|
oveq12 |
|
136 |
135
|
eleq1d |
|
137 |
134 136
|
bitr3id |
|
138 |
103 137
|
imbi12d |
|
139 |
88 89 138 6
|
vtocl2 |
|
140 |
75 81 87 139
|
syl12anc |
|
141 |
132 140
|
eqeltrd |
|
142 |
|
elpreima |
|
143 |
29 142
|
syl |
|
144 |
143
|
adantr |
|
145 |
119 141 144
|
mpbir2and |
|
146 |
145
|
adantlr |
|
147 |
21
|
mplassa |
|
148 |
39 43 147
|
syl2anc |
|
149 |
|
eqid |
|
150 |
38 149
|
asclrhm |
|
151 |
|
eqid |
|
152 |
151 25
|
rhmf |
|
153 |
148 150 152
|
3syl |
|
154 |
153
|
adantr |
|
155 |
21 39 43
|
mplsca |
|
156 |
155
|
fveq2d |
|
157 |
156
|
eleq2d |
|
158 |
157
|
biimpa |
|
159 |
154 158
|
ffvelcdmd |
|
160 |
39
|
adantr |
|
161 |
40
|
adantr |
|
162 |
41
|
adantr |
|
163 |
1
|
subrgss |
|
164 |
22 1
|
ressbas2 |
|
165 |
41 163 164
|
3syl |
|
166 |
165
|
eleq2d |
|
167 |
166
|
biimpar |
|
168 |
20 21 22 1 38 160 161 162 167
|
evlssca |
|
169 |
14
|
ralrimiva |
|
170 |
|
ovex |
|
171 |
|
vsnex |
|
172 |
170 171
|
xpex |
|
173 |
172 7
|
elab |
|
174 |
|
sneq |
|
175 |
174
|
xpeq2d |
|
176 |
175
|
eleq1d |
|
177 |
173 176
|
bitr3id |
|
178 |
177
|
cbvralvw |
|
179 |
169 178
|
sylib |
|
180 |
179
|
r19.21bi |
|
181 |
167 180
|
syldan |
|
182 |
168 181
|
eqeltrd |
|
183 |
|
elpreima |
|
184 |
29 183
|
syl |
|
185 |
184
|
adantr |
|
186 |
159 182 185
|
mpbir2and |
|
187 |
186
|
adantlr |
|
188 |
39
|
adantr |
|
189 |
45
|
adantr |
|
190 |
|
simpr |
|
191 |
21 35 25 188 189 190
|
mvrcl |
|
192 |
40
|
adantr |
|
193 |
41
|
adantr |
|
194 |
20 35 22 1 188 192 193 190
|
evlsvar |
|
195 |
170
|
mptex |
|
196 |
195 8
|
elab |
|
197 |
15 196
|
sylibr |
|
198 |
197
|
ralrimiva |
|
199 |
|
fveq2 |
|
200 |
199
|
mpteq2dv |
|
201 |
200
|
eleq1d |
|
202 |
201
|
cbvralvw |
|
203 |
198 202
|
sylib |
|
204 |
203
|
r19.21bi |
|
205 |
194 204
|
eqeltrd |
|
206 |
|
elpreima |
|
207 |
29 206
|
syl |
|
208 |
207
|
adantr |
|
209 |
191 205 208
|
mpbir2and |
|
210 |
209
|
adantlr |
|
211 |
|
simpr |
|
212 |
39
|
adantr |
|
213 |
43
|
adantr |
|
214 |
34 35 21 36 37 38 25 117 146 187 210 211 212 213
|
mplind |
|
215 |
|
fvimacnvi |
|
216 |
33 214 215
|
syl2an2r |
|
217 |
|
eleq1 |
|
218 |
216 217
|
syl5ibcom |
|
219 |
218
|
rexlimdva |
|
220 |
32 219
|
mpd |
|
221 |
13
|
elabg |
|
222 |
16 221
|
syl |
|
223 |
220 222
|
mpbid |
|