Metamath Proof Explorer


Theorem mpfind

Description: Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypotheses mpfind.cb B = Base S
mpfind.cp + ˙ = + S
mpfind.ct · ˙ = S
mpfind.cq Q = ran I evalSub S R
mpfind.ad φ f Q τ g Q η ζ
mpfind.mu φ f Q τ g Q η σ
mpfind.wa x = B I × f ψ χ
mpfind.wb x = g B I g f ψ θ
mpfind.wc x = f ψ τ
mpfind.wd x = g ψ η
mpfind.we x = f + ˙ f g ψ ζ
mpfind.wf x = f · ˙ f g ψ σ
mpfind.wg x = A ψ ρ
mpfind.co φ f R χ
mpfind.pr φ f I θ
mpfind.a φ A Q
Assertion mpfind φ ρ

Proof

Step Hyp Ref Expression
1 mpfind.cb B = Base S
2 mpfind.cp + ˙ = + S
3 mpfind.ct · ˙ = S
4 mpfind.cq Q = ran I evalSub S R
5 mpfind.ad φ f Q τ g Q η ζ
6 mpfind.mu φ f Q τ g Q η σ
7 mpfind.wa x = B I × f ψ χ
8 mpfind.wb x = g B I g f ψ θ
9 mpfind.wc x = f ψ τ
10 mpfind.wd x = g ψ η
11 mpfind.we x = f + ˙ f g ψ ζ
12 mpfind.wf x = f · ˙ f g ψ σ
13 mpfind.wg x = A ψ ρ
14 mpfind.co φ f R χ
15 mpfind.pr φ f I θ
16 mpfind.a φ A Q
17 16 4 eleqtrdi φ A ran I evalSub S R
18 4 mpfrcl A Q I V S CRing R SubRing S
19 16 18 syl φ I V S CRing R SubRing S
20 eqid I evalSub S R = I evalSub S R
21 eqid I mPoly S 𝑠 R = I mPoly S 𝑠 R
22 eqid S 𝑠 R = S 𝑠 R
23 eqid S 𝑠 B I = S 𝑠 B I
24 20 21 22 23 1 evlsrhm I V S CRing R SubRing S I evalSub S R I mPoly S 𝑠 R RingHom S 𝑠 B I
25 eqid Base I mPoly S 𝑠 R = Base I mPoly S 𝑠 R
26 eqid Base S 𝑠 B I = Base S 𝑠 B I
27 25 26 rhmf I evalSub S R I mPoly S 𝑠 R RingHom S 𝑠 B I I evalSub S R : Base I mPoly S 𝑠 R Base S 𝑠 B I
28 19 24 27 3syl φ I evalSub S R : Base I mPoly S 𝑠 R Base S 𝑠 B I
29 28 ffnd φ I evalSub S R Fn Base I mPoly S 𝑠 R
30 fvelrnb I evalSub S R Fn Base I mPoly S 𝑠 R A ran I evalSub S R y Base I mPoly S 𝑠 R I evalSub S R y = A
31 29 30 syl φ A ran I evalSub S R y Base I mPoly S 𝑠 R I evalSub S R y = A
32 17 31 mpbid φ y Base I mPoly S 𝑠 R I evalSub S R y = A
33 28 ffund φ Fun I evalSub S R
34 eqid Base S 𝑠 R = Base S 𝑠 R
35 eqid I mVar S 𝑠 R = I mVar S 𝑠 R
36 eqid + I mPoly S 𝑠 R = + I mPoly S 𝑠 R
37 eqid I mPoly S 𝑠 R = I mPoly S 𝑠 R
38 eqid algSc I mPoly S 𝑠 R = algSc I mPoly S 𝑠 R
39 19 simp1d φ I V
40 19 simp2d φ S CRing
41 19 simp3d φ R SubRing S
42 22 subrgcrng S CRing R SubRing S S 𝑠 R CRing
43 40 41 42 syl2anc φ S 𝑠 R CRing
44 crngring S 𝑠 R CRing S 𝑠 R Ring
45 43 44 syl φ S 𝑠 R Ring
46 21 39 45 mplringd φ I mPoly S 𝑠 R Ring
47 46 adantr φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ I mPoly S 𝑠 R Ring
48 simprl φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ i I evalSub S R -1 x | ψ
49 elpreima I evalSub S R Fn Base I mPoly S 𝑠 R i I evalSub S R -1 x | ψ i Base I mPoly S 𝑠 R I evalSub S R i x | ψ
50 29 49 syl φ i I evalSub S R -1 x | ψ i Base I mPoly S 𝑠 R I evalSub S R i x | ψ
51 50 adantr φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ i I evalSub S R -1 x | ψ i Base I mPoly S 𝑠 R I evalSub S R i x | ψ
52 48 51 mpbid φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ i Base I mPoly S 𝑠 R I evalSub S R i x | ψ
53 52 simpld φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ i Base I mPoly S 𝑠 R
54 simprr φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ
55 elpreima I evalSub S R Fn Base I mPoly S 𝑠 R j I evalSub S R -1 x | ψ j Base I mPoly S 𝑠 R I evalSub S R j x | ψ
56 29 55 syl φ j I evalSub S R -1 x | ψ j Base I mPoly S 𝑠 R I evalSub S R j x | ψ
57 56 adantr φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ j Base I mPoly S 𝑠 R I evalSub S R j x | ψ
58 54 57 mpbid φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ j Base I mPoly S 𝑠 R I evalSub S R j x | ψ
59 58 simpld φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ j Base I mPoly S 𝑠 R
60 25 36 ringacl I mPoly S 𝑠 R Ring i Base I mPoly S 𝑠 R j Base I mPoly S 𝑠 R i + I mPoly S 𝑠 R j Base I mPoly S 𝑠 R
61 47 53 59 60 syl3anc φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ i + I mPoly S 𝑠 R j Base I mPoly S 𝑠 R
62 rhmghm I evalSub S R I mPoly S 𝑠 R RingHom S 𝑠 B I I evalSub S R I mPoly S 𝑠 R GrpHom S 𝑠 B I
63 19 24 62 3syl φ I evalSub S R I mPoly S 𝑠 R GrpHom S 𝑠 B I
64 63 adantr φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ I evalSub S R I mPoly S 𝑠 R GrpHom S 𝑠 B I
65 eqid + S 𝑠 B I = + S 𝑠 B I
66 25 36 65 ghmlin I evalSub S R I mPoly S 𝑠 R GrpHom S 𝑠 B I i Base I mPoly S 𝑠 R j Base I mPoly S 𝑠 R I evalSub S R i + I mPoly S 𝑠 R j = I evalSub S R i + S 𝑠 B I I evalSub S R j
67 64 53 59 66 syl3anc φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ I evalSub S R i + I mPoly S 𝑠 R j = I evalSub S R i + S 𝑠 B I I evalSub S R j
68 40 adantr φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ S CRing
69 ovexd φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ B I V
70 28 adantr φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ I evalSub S R : Base I mPoly S 𝑠 R Base S 𝑠 B I
71 70 53 ffvelcdmd φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ I evalSub S R i Base S 𝑠 B I
72 70 59 ffvelcdmd φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ I evalSub S R j Base S 𝑠 B I
73 23 26 68 69 71 72 2 65 pwsplusgval φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ I evalSub S R i + S 𝑠 B I I evalSub S R j = I evalSub S R i + ˙ f I evalSub S R j
74 67 73 eqtrd φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ I evalSub S R i + I mPoly S 𝑠 R j = I evalSub S R i + ˙ f I evalSub S R j
75 simpl φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ φ
76 fnfvelrn I evalSub S R Fn Base I mPoly S 𝑠 R i Base I mPoly S 𝑠 R I evalSub S R i ran I evalSub S R
77 29 53 76 syl2an2r φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ I evalSub S R i ran I evalSub S R
78 77 4 eleqtrrdi φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ I evalSub S R i Q
79 fvimacnvi Fun I evalSub S R i I evalSub S R -1 x | ψ I evalSub S R i x | ψ
80 33 48 79 syl2an2r φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ I evalSub S R i x | ψ
81 78 80 jca φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ I evalSub S R i Q I evalSub S R i x | ψ
82 fnfvelrn I evalSub S R Fn Base I mPoly S 𝑠 R j Base I mPoly S 𝑠 R I evalSub S R j ran I evalSub S R
83 29 59 82 syl2an2r φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ I evalSub S R j ran I evalSub S R
84 83 4 eleqtrrdi φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ I evalSub S R j Q
85 fvimacnvi Fun I evalSub S R j I evalSub S R -1 x | ψ I evalSub S R j x | ψ
86 33 54 85 syl2an2r φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ I evalSub S R j x | ψ
87 84 86 jca φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ I evalSub S R j Q I evalSub S R j x | ψ
88 fvex I evalSub S R i V
89 fvex I evalSub S R j V
90 eleq1 f = I evalSub S R i f Q I evalSub S R i Q
91 vex f V
92 91 9 elab f x | ψ τ
93 eleq1 f = I evalSub S R i f x | ψ I evalSub S R i x | ψ
94 92 93 bitr3id f = I evalSub S R i τ I evalSub S R i x | ψ
95 90 94 anbi12d f = I evalSub S R i f Q τ I evalSub S R i Q I evalSub S R i x | ψ
96 eleq1 g = I evalSub S R j g Q I evalSub S R j Q
97 vex g V
98 97 10 elab g x | ψ η
99 eleq1 g = I evalSub S R j g x | ψ I evalSub S R j x | ψ
100 98 99 bitr3id g = I evalSub S R j η I evalSub S R j x | ψ
101 96 100 anbi12d g = I evalSub S R j g Q η I evalSub S R j Q I evalSub S R j x | ψ
102 95 101 bi2anan9 f = I evalSub S R i g = I evalSub S R j f Q τ g Q η I evalSub S R i Q I evalSub S R i x | ψ I evalSub S R j Q I evalSub S R j x | ψ
103 102 anbi2d f = I evalSub S R i g = I evalSub S R j φ f Q τ g Q η φ I evalSub S R i Q I evalSub S R i x | ψ I evalSub S R j Q I evalSub S R j x | ψ
104 ovex f + ˙ f g V
105 104 11 elab f + ˙ f g x | ψ ζ
106 oveq12 f = I evalSub S R i g = I evalSub S R j f + ˙ f g = I evalSub S R i + ˙ f I evalSub S R j
107 106 eleq1d f = I evalSub S R i g = I evalSub S R j f + ˙ f g x | ψ I evalSub S R i + ˙ f I evalSub S R j x | ψ
108 105 107 bitr3id f = I evalSub S R i g = I evalSub S R j ζ I evalSub S R i + ˙ f I evalSub S R j x | ψ
109 103 108 imbi12d f = I evalSub S R i g = I evalSub S R j φ f Q τ g Q η ζ φ I evalSub S R i Q I evalSub S R i x | ψ I evalSub S R j Q I evalSub S R j x | ψ I evalSub S R i + ˙ f I evalSub S R j x | ψ
110 88 89 109 5 vtocl2 φ I evalSub S R i Q I evalSub S R i x | ψ I evalSub S R j Q I evalSub S R j x | ψ I evalSub S R i + ˙ f I evalSub S R j x | ψ
111 75 81 87 110 syl12anc φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ I evalSub S R i + ˙ f I evalSub S R j x | ψ
112 74 111 eqeltrd φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ I evalSub S R i + I mPoly S 𝑠 R j x | ψ
113 elpreima I evalSub S R Fn Base I mPoly S 𝑠 R i + I mPoly S 𝑠 R j I evalSub S R -1 x | ψ i + I mPoly S 𝑠 R j Base I mPoly S 𝑠 R I evalSub S R i + I mPoly S 𝑠 R j x | ψ
114 29 113 syl φ i + I mPoly S 𝑠 R j I evalSub S R -1 x | ψ i + I mPoly S 𝑠 R j Base I mPoly S 𝑠 R I evalSub S R i + I mPoly S 𝑠 R j x | ψ
115 114 adantr φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ i + I mPoly S 𝑠 R j I evalSub S R -1 x | ψ i + I mPoly S 𝑠 R j Base I mPoly S 𝑠 R I evalSub S R i + I mPoly S 𝑠 R j x | ψ
116 61 112 115 mpbir2and φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ i + I mPoly S 𝑠 R j I evalSub S R -1 x | ψ
117 116 adantlr φ y Base I mPoly S 𝑠 R i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ i + I mPoly S 𝑠 R j I evalSub S R -1 x | ψ
118 25 37 ringcl I mPoly S 𝑠 R Ring i Base I mPoly S 𝑠 R j Base I mPoly S 𝑠 R i I mPoly S 𝑠 R j Base I mPoly S 𝑠 R
119 47 53 59 118 syl3anc φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ i I mPoly S 𝑠 R j Base I mPoly S 𝑠 R
120 eqid mulGrp I mPoly S 𝑠 R = mulGrp I mPoly S 𝑠 R
121 eqid mulGrp S 𝑠 B I = mulGrp S 𝑠 B I
122 120 121 rhmmhm I evalSub S R I mPoly S 𝑠 R RingHom S 𝑠 B I I evalSub S R mulGrp I mPoly S 𝑠 R MndHom mulGrp S 𝑠 B I
123 19 24 122 3syl φ I evalSub S R mulGrp I mPoly S 𝑠 R MndHom mulGrp S 𝑠 B I
124 123 adantr φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ I evalSub S R mulGrp I mPoly S 𝑠 R MndHom mulGrp S 𝑠 B I
125 120 25 mgpbas Base I mPoly S 𝑠 R = Base mulGrp I mPoly S 𝑠 R
126 120 37 mgpplusg I mPoly S 𝑠 R = + mulGrp I mPoly S 𝑠 R
127 eqid S 𝑠 B I = S 𝑠 B I
128 121 127 mgpplusg S 𝑠 B I = + mulGrp S 𝑠 B I
129 125 126 128 mhmlin I evalSub S R mulGrp I mPoly S 𝑠 R MndHom mulGrp S 𝑠 B I i Base I mPoly S 𝑠 R j Base I mPoly S 𝑠 R I evalSub S R i I mPoly S 𝑠 R j = I evalSub S R i S 𝑠 B I I evalSub S R j
130 124 53 59 129 syl3anc φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ I evalSub S R i I mPoly S 𝑠 R j = I evalSub S R i S 𝑠 B I I evalSub S R j
131 23 26 68 69 71 72 3 127 pwsmulrval φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ I evalSub S R i S 𝑠 B I I evalSub S R j = I evalSub S R i · ˙ f I evalSub S R j
132 130 131 eqtrd φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ I evalSub S R i I mPoly S 𝑠 R j = I evalSub S R i · ˙ f I evalSub S R j
133 ovex f · ˙ f g V
134 133 12 elab f · ˙ f g x | ψ σ
135 oveq12 f = I evalSub S R i g = I evalSub S R j f · ˙ f g = I evalSub S R i · ˙ f I evalSub S R j
136 135 eleq1d f = I evalSub S R i g = I evalSub S R j f · ˙ f g x | ψ I evalSub S R i · ˙ f I evalSub S R j x | ψ
137 134 136 bitr3id f = I evalSub S R i g = I evalSub S R j σ I evalSub S R i · ˙ f I evalSub S R j x | ψ
138 103 137 imbi12d f = I evalSub S R i g = I evalSub S R j φ f Q τ g Q η σ φ I evalSub S R i Q I evalSub S R i x | ψ I evalSub S R j Q I evalSub S R j x | ψ I evalSub S R i · ˙ f I evalSub S R j x | ψ
139 88 89 138 6 vtocl2 φ I evalSub S R i Q I evalSub S R i x | ψ I evalSub S R j Q I evalSub S R j x | ψ I evalSub S R i · ˙ f I evalSub S R j x | ψ
140 75 81 87 139 syl12anc φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ I evalSub S R i · ˙ f I evalSub S R j x | ψ
141 132 140 eqeltrd φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ I evalSub S R i I mPoly S 𝑠 R j x | ψ
142 elpreima I evalSub S R Fn Base I mPoly S 𝑠 R i I mPoly S 𝑠 R j I evalSub S R -1 x | ψ i I mPoly S 𝑠 R j Base I mPoly S 𝑠 R I evalSub S R i I mPoly S 𝑠 R j x | ψ
143 29 142 syl φ i I mPoly S 𝑠 R j I evalSub S R -1 x | ψ i I mPoly S 𝑠 R j Base I mPoly S 𝑠 R I evalSub S R i I mPoly S 𝑠 R j x | ψ
144 143 adantr φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ i I mPoly S 𝑠 R j I evalSub S R -1 x | ψ i I mPoly S 𝑠 R j Base I mPoly S 𝑠 R I evalSub S R i I mPoly S 𝑠 R j x | ψ
145 119 141 144 mpbir2and φ i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ i I mPoly S 𝑠 R j I evalSub S R -1 x | ψ
146 145 adantlr φ y Base I mPoly S 𝑠 R i I evalSub S R -1 x | ψ j I evalSub S R -1 x | ψ i I mPoly S 𝑠 R j I evalSub S R -1 x | ψ
147 21 mplassa I V S 𝑠 R CRing I mPoly S 𝑠 R AssAlg
148 39 43 147 syl2anc φ I mPoly S 𝑠 R AssAlg
149 eqid Scalar I mPoly S 𝑠 R = Scalar I mPoly S 𝑠 R
150 38 149 asclrhm I mPoly S 𝑠 R AssAlg algSc I mPoly S 𝑠 R Scalar I mPoly S 𝑠 R RingHom I mPoly S 𝑠 R
151 eqid Base Scalar I mPoly S 𝑠 R = Base Scalar I mPoly S 𝑠 R
152 151 25 rhmf algSc I mPoly S 𝑠 R Scalar I mPoly S 𝑠 R RingHom I mPoly S 𝑠 R algSc I mPoly S 𝑠 R : Base Scalar I mPoly S 𝑠 R Base I mPoly S 𝑠 R
153 148 150 152 3syl φ algSc I mPoly S 𝑠 R : Base Scalar I mPoly S 𝑠 R Base I mPoly S 𝑠 R
154 153 adantr φ i Base S 𝑠 R algSc I mPoly S 𝑠 R : Base Scalar I mPoly S 𝑠 R Base I mPoly S 𝑠 R
155 21 39 43 mplsca φ S 𝑠 R = Scalar I mPoly S 𝑠 R
156 155 fveq2d φ Base S 𝑠 R = Base Scalar I mPoly S 𝑠 R
157 156 eleq2d φ i Base S 𝑠 R i Base Scalar I mPoly S 𝑠 R
158 157 biimpa φ i Base S 𝑠 R i Base Scalar I mPoly S 𝑠 R
159 154 158 ffvelcdmd φ i Base S 𝑠 R algSc I mPoly S 𝑠 R i Base I mPoly S 𝑠 R
160 39 adantr φ i Base S 𝑠 R I V
161 40 adantr φ i Base S 𝑠 R S CRing
162 41 adantr φ i Base S 𝑠 R R SubRing S
163 1 subrgss R SubRing S R B
164 22 1 ressbas2 R B R = Base S 𝑠 R
165 41 163 164 3syl φ R = Base S 𝑠 R
166 165 eleq2d φ i R i Base S 𝑠 R
167 166 biimpar φ i Base S 𝑠 R i R
168 20 21 22 1 38 160 161 162 167 evlssca φ i Base S 𝑠 R I evalSub S R algSc I mPoly S 𝑠 R i = B I × i
169 14 ralrimiva φ f R χ
170 ovex B I V
171 vsnex f V
172 170 171 xpex B I × f V
173 172 7 elab B I × f x | ψ χ
174 sneq f = i f = i
175 174 xpeq2d f = i B I × f = B I × i
176 175 eleq1d f = i B I × f x | ψ B I × i x | ψ
177 173 176 bitr3id f = i χ B I × i x | ψ
178 177 cbvralvw f R χ i R B I × i x | ψ
179 169 178 sylib φ i R B I × i x | ψ
180 179 r19.21bi φ i R B I × i x | ψ
181 167 180 syldan φ i Base S 𝑠 R B I × i x | ψ
182 168 181 eqeltrd φ i Base S 𝑠 R I evalSub S R algSc I mPoly S 𝑠 R i x | ψ
183 elpreima I evalSub S R Fn Base I mPoly S 𝑠 R algSc I mPoly S 𝑠 R i I evalSub S R -1 x | ψ algSc I mPoly S 𝑠 R i Base I mPoly S 𝑠 R I evalSub S R algSc I mPoly S 𝑠 R i x | ψ
184 29 183 syl φ algSc I mPoly S 𝑠 R i I evalSub S R -1 x | ψ algSc I mPoly S 𝑠 R i Base I mPoly S 𝑠 R I evalSub S R algSc I mPoly S 𝑠 R i x | ψ
185 184 adantr φ i Base S 𝑠 R algSc I mPoly S 𝑠 R i I evalSub S R -1 x | ψ algSc I mPoly S 𝑠 R i Base I mPoly S 𝑠 R I evalSub S R algSc I mPoly S 𝑠 R i x | ψ
186 159 182 185 mpbir2and φ i Base S 𝑠 R algSc I mPoly S 𝑠 R i I evalSub S R -1 x | ψ
187 186 adantlr φ y Base I mPoly S 𝑠 R i Base S 𝑠 R algSc I mPoly S 𝑠 R i I evalSub S R -1 x | ψ
188 39 adantr φ i I I V
189 45 adantr φ i I S 𝑠 R Ring
190 simpr φ i I i I
191 21 35 25 188 189 190 mvrcl φ i I I mVar S 𝑠 R i Base I mPoly S 𝑠 R
192 40 adantr φ i I S CRing
193 41 adantr φ i I R SubRing S
194 20 35 22 1 188 192 193 190 evlsvar φ i I I evalSub S R I mVar S 𝑠 R i = g B I g i
195 170 mptex g B I g f V
196 195 8 elab g B I g f x | ψ θ
197 15 196 sylibr φ f I g B I g f x | ψ
198 197 ralrimiva φ f I g B I g f x | ψ
199 fveq2 f = i g f = g i
200 199 mpteq2dv f = i g B I g f = g B I g i
201 200 eleq1d f = i g B I g f x | ψ g B I g i x | ψ
202 201 cbvralvw f I g B I g f x | ψ i I g B I g i x | ψ
203 198 202 sylib φ i I g B I g i x | ψ
204 203 r19.21bi φ i I g B I g i x | ψ
205 194 204 eqeltrd φ i I I evalSub S R I mVar S 𝑠 R i x | ψ
206 elpreima I evalSub S R Fn Base I mPoly S 𝑠 R I mVar S 𝑠 R i I evalSub S R -1 x | ψ I mVar S 𝑠 R i Base I mPoly S 𝑠 R I evalSub S R I mVar S 𝑠 R i x | ψ
207 29 206 syl φ I mVar S 𝑠 R i I evalSub S R -1 x | ψ I mVar S 𝑠 R i Base I mPoly S 𝑠 R I evalSub S R I mVar S 𝑠 R i x | ψ
208 207 adantr φ i I I mVar S 𝑠 R i I evalSub S R -1 x | ψ I mVar S 𝑠 R i Base I mPoly S 𝑠 R I evalSub S R I mVar S 𝑠 R i x | ψ
209 191 205 208 mpbir2and φ i I I mVar S 𝑠 R i I evalSub S R -1 x | ψ
210 209 adantlr φ y Base I mPoly S 𝑠 R i I I mVar S 𝑠 R i I evalSub S R -1 x | ψ
211 simpr φ y Base I mPoly S 𝑠 R y Base I mPoly S 𝑠 R
212 39 adantr φ y Base I mPoly S 𝑠 R I V
213 43 adantr φ y Base I mPoly S 𝑠 R S 𝑠 R CRing
214 34 35 21 36 37 38 25 117 146 187 210 211 212 213 mplind φ y Base I mPoly S 𝑠 R y I evalSub S R -1 x | ψ
215 fvimacnvi Fun I evalSub S R y I evalSub S R -1 x | ψ I evalSub S R y x | ψ
216 33 214 215 syl2an2r φ y Base I mPoly S 𝑠 R I evalSub S R y x | ψ
217 eleq1 I evalSub S R y = A I evalSub S R y x | ψ A x | ψ
218 216 217 syl5ibcom φ y Base I mPoly S 𝑠 R I evalSub S R y = A A x | ψ
219 218 rexlimdva φ y Base I mPoly S 𝑠 R I evalSub S R y = A A x | ψ
220 32 219 mpd φ A x | ψ
221 13 elabg A Q A x | ψ ρ
222 16 221 syl φ A x | ψ ρ
223 220 222 mpbid φ ρ