Metamath Proof Explorer


Theorem mpfpf1

Description: Convert a multivariate polynomial function to univariate. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses pf1rcl.q Q = ran eval 1 R
pf1f.b B = Base R
mpfpf1.q E = ran 1 𝑜 eval R
Assertion mpfpf1 F E F y B 1 𝑜 × y Q

Proof

Step Hyp Ref Expression
1 pf1rcl.q Q = ran eval 1 R
2 pf1f.b B = Base R
3 mpfpf1.q E = ran 1 𝑜 eval R
4 eqid 1 𝑜 eval R = 1 𝑜 eval R
5 4 2 evlval 1 𝑜 eval R = 1 𝑜 evalSub R B
6 5 rneqi ran 1 𝑜 eval R = ran 1 𝑜 evalSub R B
7 3 6 eqtri E = ran 1 𝑜 evalSub R B
8 7 mpfrcl F E 1 𝑜 V R CRing B SubRing R
9 8 simp2d F E R CRing
10 id F E F E
11 10 3 eleqtrdi F E F ran 1 𝑜 eval R
12 1on 1 𝑜 On
13 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
14 eqid R 𝑠 B 1 𝑜 = R 𝑠 B 1 𝑜
15 4 2 13 14 evlrhm 1 𝑜 On R CRing 1 𝑜 eval R 1 𝑜 mPoly R RingHom R 𝑠 B 1 𝑜
16 12 9 15 sylancr F E 1 𝑜 eval R 1 𝑜 mPoly R RingHom R 𝑠 B 1 𝑜
17 eqid Poly 1 R = Poly 1 R
18 eqid PwSer 1 R = PwSer 1 R
19 eqid Base Poly 1 R = Base Poly 1 R
20 17 18 19 ply1bas Base Poly 1 R = Base 1 𝑜 mPoly R
21 eqid Base R 𝑠 B 1 𝑜 = Base R 𝑠 B 1 𝑜
22 20 21 rhmf 1 𝑜 eval R 1 𝑜 mPoly R RingHom R 𝑠 B 1 𝑜 1 𝑜 eval R : Base Poly 1 R Base R 𝑠 B 1 𝑜
23 ffn 1 𝑜 eval R : Base Poly 1 R Base R 𝑠 B 1 𝑜 1 𝑜 eval R Fn Base Poly 1 R
24 fvelrnb 1 𝑜 eval R Fn Base Poly 1 R F ran 1 𝑜 eval R x Base Poly 1 R 1 𝑜 eval R x = F
25 16 22 23 24 4syl F E F ran 1 𝑜 eval R x Base Poly 1 R 1 𝑜 eval R x = F
26 11 25 mpbid F E x Base Poly 1 R 1 𝑜 eval R x = F
27 eqid eval 1 R = eval 1 R
28 27 4 2 13 20 evl1val R CRing x Base Poly 1 R eval 1 R x = 1 𝑜 eval R x y B 1 𝑜 × y
29 eqid R 𝑠 B = R 𝑠 B
30 27 17 29 2 evl1rhm R CRing eval 1 R Poly 1 R RingHom R 𝑠 B
31 eqid Base R 𝑠 B = Base R 𝑠 B
32 19 31 rhmf eval 1 R Poly 1 R RingHom R 𝑠 B eval 1 R : Base Poly 1 R Base R 𝑠 B
33 ffn eval 1 R : Base Poly 1 R Base R 𝑠 B eval 1 R Fn Base Poly 1 R
34 30 32 33 3syl R CRing eval 1 R Fn Base Poly 1 R
35 fnfvelrn eval 1 R Fn Base Poly 1 R x Base Poly 1 R eval 1 R x ran eval 1 R
36 34 35 sylan R CRing x Base Poly 1 R eval 1 R x ran eval 1 R
37 36 1 eleqtrrdi R CRing x Base Poly 1 R eval 1 R x Q
38 28 37 eqeltrrd R CRing x Base Poly 1 R 1 𝑜 eval R x y B 1 𝑜 × y Q
39 coeq1 1 𝑜 eval R x = F 1 𝑜 eval R x y B 1 𝑜 × y = F y B 1 𝑜 × y
40 39 eleq1d 1 𝑜 eval R x = F 1 𝑜 eval R x y B 1 𝑜 × y Q F y B 1 𝑜 × y Q
41 38 40 syl5ibcom R CRing x Base Poly 1 R 1 𝑜 eval R x = F F y B 1 𝑜 × y Q
42 41 rexlimdva R CRing x Base Poly 1 R 1 𝑜 eval R x = F F y B 1 𝑜 × y Q
43 9 26 42 sylc F E F y B 1 𝑜 × y Q