Metamath Proof Explorer


Theorem mpfproj

Description: Projections are multivariate polynomial functions. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Hypotheses mpfconst.b B = Base S
mpfconst.q Q = ran I evalSub S R
mpfconst.i φ I V
mpfconst.s φ S CRing
mpfconst.r φ R SubRing S
mpfproj.j φ J I
Assertion mpfproj φ f B I f J Q

Proof

Step Hyp Ref Expression
1 mpfconst.b B = Base S
2 mpfconst.q Q = ran I evalSub S R
3 mpfconst.i φ I V
4 mpfconst.s φ S CRing
5 mpfconst.r φ R SubRing S
6 mpfproj.j φ J I
7 eqid I evalSub S R = I evalSub S R
8 eqid I mVar S 𝑠 R = I mVar S 𝑠 R
9 eqid S 𝑠 R = S 𝑠 R
10 7 8 9 1 3 4 5 6 evlsvar φ I evalSub S R I mVar S 𝑠 R J = f B I f J
11 eqid I mPoly S 𝑠 R = I mPoly S 𝑠 R
12 eqid S 𝑠 B I = S 𝑠 B I
13 7 11 9 12 1 evlsrhm I V S CRing R SubRing S I evalSub S R I mPoly S 𝑠 R RingHom S 𝑠 B I
14 3 4 5 13 syl3anc φ I evalSub S R I mPoly S 𝑠 R RingHom S 𝑠 B I
15 eqid Base I mPoly S 𝑠 R = Base I mPoly S 𝑠 R
16 eqid Base S 𝑠 B I = Base S 𝑠 B I
17 15 16 rhmf I evalSub S R I mPoly S 𝑠 R RingHom S 𝑠 B I I evalSub S R : Base I mPoly S 𝑠 R Base S 𝑠 B I
18 ffn I evalSub S R : Base I mPoly S 𝑠 R Base S 𝑠 B I I evalSub S R Fn Base I mPoly S 𝑠 R
19 14 17 18 3syl φ I evalSub S R Fn Base I mPoly S 𝑠 R
20 9 subrgring R SubRing S S 𝑠 R Ring
21 5 20 syl φ S 𝑠 R Ring
22 11 8 15 3 21 6 mvrcl φ I mVar S 𝑠 R J Base I mPoly S 𝑠 R
23 fnfvelrn I evalSub S R Fn Base I mPoly S 𝑠 R I mVar S 𝑠 R J Base I mPoly S 𝑠 R I evalSub S R I mVar S 𝑠 R J ran I evalSub S R
24 19 22 23 syl2anc φ I evalSub S R I mVar S 𝑠 R J ran I evalSub S R
25 24 2 eleqtrrdi φ I evalSub S R I mVar S 𝑠 R J Q
26 10 25 eqeltrrd φ f B I f J Q