Metamath Proof Explorer


Theorem mpfrcl

Description: Reverse closure for the set of polynomial functions. (Contributed by Stefan O'Rear, 19-Mar-2015)

Ref Expression
Hypothesis mpfrcl.q Q = ran I evalSub S R
Assertion mpfrcl X Q I V S CRing R SubRing S

Proof

Step Hyp Ref Expression
1 mpfrcl.q Q = ran I evalSub S R
2 ne0i X ran I evalSub S R ran I evalSub S R
3 2 1 eleq2s X Q ran I evalSub S R
4 rneq I evalSub S R = ran I evalSub S R = ran
5 rn0 ran =
6 4 5 eqtrdi I evalSub S R = ran I evalSub S R =
7 6 necon3i ran I evalSub S R I evalSub S R
8 fveq1 I evalSub S = I evalSub S R = R
9 0fv R =
10 8 9 eqtrdi I evalSub S = I evalSub S R =
11 10 necon3i I evalSub S R I evalSub S
12 reldmevls Rel dom evalSub
13 12 ovprc1 ¬ I V I evalSub S =
14 13 necon1ai I evalSub S I V
15 n0 I evalSub S a a I evalSub S
16 df-evls evalSub = i V , s CRing Base s / b r SubRing s i mPoly s 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x
17 16 elmpocl2 a I evalSub S S CRing
18 17 a1d a I evalSub S I V S CRing
19 18 exlimiv a a I evalSub S I V S CRing
20 15 19 sylbi I evalSub S I V S CRing
21 14 20 jcai I evalSub S I V S CRing
22 11 21 syl I evalSub S R I V S CRing
23 fvex Base s V
24 nfcv _ b SubRing s
25 nfcsb1v _ b Base s / b i mPoly s 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x
26 24 25 nfmpt _ b r SubRing s Base s / b i mPoly s 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x
27 csbeq1a b = Base s i mPoly s 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x = Base s / b i mPoly s 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x
28 27 mpteq2dv b = Base s r SubRing s i mPoly s 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x = r SubRing s Base s / b i mPoly s 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x
29 23 26 28 csbief Base s / b r SubRing s i mPoly s 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x = r SubRing s Base s / b i mPoly s 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x
30 fveq2 s = S SubRing s = SubRing S
31 30 adantl i = I s = S SubRing s = SubRing S
32 fveq2 s = S Base s = Base S
33 32 adantl i = I s = S Base s = Base S
34 33 csbeq1d i = I s = S Base s / b i mPoly s 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x = Base S / b i mPoly s 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x
35 id i = I i = I
36 oveq1 s = S s 𝑠 r = S 𝑠 r
37 35 36 oveqan12d i = I s = S i mPoly s 𝑠 r = I mPoly S 𝑠 r
38 37 csbeq1d i = I s = S i mPoly s 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x = I mPoly S 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x
39 id s = S s = S
40 oveq2 i = I b i = b I
41 39 40 oveqan12rd i = I s = S s 𝑠 b i = S 𝑠 b I
42 41 oveq2d i = I s = S w RingHom s 𝑠 b i = w RingHom S 𝑠 b I
43 40 adantr i = I s = S b i = b I
44 43 xpeq1d i = I s = S b i × x = b I × x
45 44 mpteq2dv i = I s = S x r b i × x = x r b I × x
46 45 eqeq2d i = I s = S f algSc w = x r b i × x f algSc w = x r b I × x
47 35 36 oveqan12d i = I s = S i mVar s 𝑠 r = I mVar S 𝑠 r
48 47 coeq2d i = I s = S f i mVar s 𝑠 r = f I mVar S 𝑠 r
49 simpl i = I s = S i = I
50 43 mpteq1d i = I s = S g b i g x = g b I g x
51 49 50 mpteq12dv i = I s = S x i g b i g x = x I g b I g x
52 48 51 eqeq12d i = I s = S f i mVar s 𝑠 r = x i g b i g x f I mVar S 𝑠 r = x I g b I g x
53 46 52 anbi12d i = I s = S f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x f algSc w = x r b I × x f I mVar S 𝑠 r = x I g b I g x
54 42 53 riotaeqbidv i = I s = S ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x = ι f w RingHom S 𝑠 b I | f algSc w = x r b I × x f I mVar S 𝑠 r = x I g b I g x
55 54 csbeq2dv i = I s = S I mPoly S 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x = I mPoly S 𝑠 r / w ι f w RingHom S 𝑠 b I | f algSc w = x r b I × x f I mVar S 𝑠 r = x I g b I g x
56 38 55 eqtrd i = I s = S i mPoly s 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x = I mPoly S 𝑠 r / w ι f w RingHom S 𝑠 b I | f algSc w = x r b I × x f I mVar S 𝑠 r = x I g b I g x
57 56 csbeq2dv i = I s = S Base S / b i mPoly s 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x = Base S / b I mPoly S 𝑠 r / w ι f w RingHom S 𝑠 b I | f algSc w = x r b I × x f I mVar S 𝑠 r = x I g b I g x
58 34 57 eqtrd i = I s = S Base s / b i mPoly s 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x = Base S / b I mPoly S 𝑠 r / w ι f w RingHom S 𝑠 b I | f algSc w = x r b I × x f I mVar S 𝑠 r = x I g b I g x
59 31 58 mpteq12dv i = I s = S r SubRing s Base s / b i mPoly s 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x = r SubRing S Base S / b I mPoly S 𝑠 r / w ι f w RingHom S 𝑠 b I | f algSc w = x r b I × x f I mVar S 𝑠 r = x I g b I g x
60 29 59 eqtrid i = I s = S Base s / b r SubRing s i mPoly s 𝑠 r / w ι f w RingHom s 𝑠 b i | f algSc w = x r b i × x f i mVar s 𝑠 r = x i g b i g x = r SubRing S Base S / b I mPoly S 𝑠 r / w ι f w RingHom S 𝑠 b I | f algSc w = x r b I × x f I mVar S 𝑠 r = x I g b I g x
61 fvex SubRing S V
62 61 mptex r SubRing S Base S / b I mPoly S 𝑠 r / w ι f w RingHom S 𝑠 b I | f algSc w = x r b I × x f I mVar S 𝑠 r = x I g b I g x V
63 60 16 62 ovmpoa I V S CRing I evalSub S = r SubRing S Base S / b I mPoly S 𝑠 r / w ι f w RingHom S 𝑠 b I | f algSc w = x r b I × x f I mVar S 𝑠 r = x I g b I g x
64 63 dmeqd I V S CRing dom I evalSub S = dom r SubRing S Base S / b I mPoly S 𝑠 r / w ι f w RingHom S 𝑠 b I | f algSc w = x r b I × x f I mVar S 𝑠 r = x I g b I g x
65 eqid r SubRing S Base S / b I mPoly S 𝑠 r / w ι f w RingHom S 𝑠 b I | f algSc w = x r b I × x f I mVar S 𝑠 r = x I g b I g x = r SubRing S Base S / b I mPoly S 𝑠 r / w ι f w RingHom S 𝑠 b I | f algSc w = x r b I × x f I mVar S 𝑠 r = x I g b I g x
66 65 dmmptss dom r SubRing S Base S / b I mPoly S 𝑠 r / w ι f w RingHom S 𝑠 b I | f algSc w = x r b I × x f I mVar S 𝑠 r = x I g b I g x SubRing S
67 64 66 eqsstrdi I V S CRing dom I evalSub S SubRing S
68 67 ssneld I V S CRing ¬ R SubRing S ¬ R dom I evalSub S
69 ndmfv ¬ R dom I evalSub S I evalSub S R =
70 68 69 syl6 I V S CRing ¬ R SubRing S I evalSub S R =
71 70 necon1ad I V S CRing I evalSub S R R SubRing S
72 71 com12 I evalSub S R I V S CRing R SubRing S
73 22 72 jcai I evalSub S R I V S CRing R SubRing S
74 df-3an I V S CRing R SubRing S I V S CRing R SubRing S
75 73 74 sylibr I evalSub S R I V S CRing R SubRing S
76 3 7 75 3syl X Q I V S CRing R SubRing S