Metamath Proof Explorer


Theorem mpii

Description: A doubly nested modus ponens inference. (Contributed by NM, 31-Dec-1993) (Proof shortened by Wolf Lammen, 31-Jul-2012)

Ref Expression
Hypotheses mpii.1 χ
mpii.2 φ ψ χ θ
Assertion mpii φ ψ θ

Proof

Step Hyp Ref Expression
1 mpii.1 χ
2 mpii.2 φ ψ χ θ
3 1 a1i ψ χ
4 3 2 mpdi φ ψ θ