Metamath Proof Explorer


Theorem mpisyl

Description: A syllogism combined with a modus ponens inference. (Contributed by Alan Sare, 25-Jul-2011)

Ref Expression
Hypotheses mpisyl.1 φ ψ
mpisyl.2 χ
mpisyl.3 ψ χ θ
Assertion mpisyl φ θ

Proof

Step Hyp Ref Expression
1 mpisyl.1 φ ψ
2 mpisyl.2 χ
3 mpisyl.3 ψ χ θ
4 2 3 mpi ψ θ
5 1 4 syl φ θ