Metamath Proof Explorer


Theorem mpl1

Description: The identity element of the ring of polynomials. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses mpl1.p P = I mPoly R
mpl1.d D = f 0 I | f -1 Fin
mpl1.z 0 ˙ = 0 R
mpl1.o 1 ˙ = 1 R
mpl1.u U = 1 P
mpl1.i φ I W
mpl1.r φ R Ring
Assertion mpl1 φ U = x D if x = I × 0 1 ˙ 0 ˙

Proof

Step Hyp Ref Expression
1 mpl1.p P = I mPoly R
2 mpl1.d D = f 0 I | f -1 Fin
3 mpl1.z 0 ˙ = 0 R
4 mpl1.o 1 ˙ = 1 R
5 mpl1.u U = 1 P
6 mpl1.i φ I W
7 mpl1.r φ R Ring
8 eqid I mPwSer R = I mPwSer R
9 eqid Base P = Base P
10 8 1 9 6 7 mplsubrg φ Base P SubRing I mPwSer R
11 1 8 9 mplval2 P = I mPwSer R 𝑠 Base P
12 eqid 1 I mPwSer R = 1 I mPwSer R
13 11 12 subrg1 Base P SubRing I mPwSer R 1 I mPwSer R = 1 P
14 10 13 syl φ 1 I mPwSer R = 1 P
15 8 6 7 2 3 4 12 psr1 φ 1 I mPwSer R = x D if x = I × 0 1 ˙ 0 ˙
16 14 15 eqtr3d φ 1 P = x D if x = I × 0 1 ˙ 0 ˙
17 5 16 eqtrid φ U = x D if x = I × 0 1 ˙ 0 ˙