Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Structures
mplascl0
Next ⟩
mplascl1
Metamath Proof Explorer
Ascii
Unicode
Theorem
mplascl0
Description:
The zero scalar as a polynomial.
(Contributed by
SN
, 23-Nov-2024)
Ref
Expression
Hypotheses
mplascl0.w
⊢
W
=
I
mPoly
R
mplascl0.a
⊢
A
=
algSc
⁡
W
mplascl0.o
⊢
O
=
0
R
mplascl0.0
⊢
0
˙
=
0
W
mplascl0.i
⊢
φ
→
I
∈
V
mplascl0.r
⊢
φ
→
R
∈
Ring
Assertion
mplascl0
⊢
φ
→
A
⁡
O
=
0
˙
Proof
Step
Hyp
Ref
Expression
1
mplascl0.w
⊢
W
=
I
mPoly
R
2
mplascl0.a
⊢
A
=
algSc
⁡
W
3
mplascl0.o
⊢
O
=
0
R
4
mplascl0.0
⊢
0
˙
=
0
W
5
mplascl0.i
⊢
φ
→
I
∈
V
6
mplascl0.r
⊢
φ
→
R
∈
Ring
7
1
5
6
mplsca
⊢
φ
→
R
=
Scalar
⁡
W
8
7
fveq2d
⊢
φ
→
0
R
=
0
Scalar
⁡
W
9
3
8
eqtrid
⊢
φ
→
O
=
0
Scalar
⁡
W
10
9
fveq2d
⊢
φ
→
A
⁡
O
=
A
⁡
0
Scalar
⁡
W
11
eqid
⊢
Scalar
⁡
W
=
Scalar
⁡
W
12
1
5
6
mpllmodd
⊢
φ
→
W
∈
LMod
13
1
5
6
mplringd
⊢
φ
→
W
∈
Ring
14
2
11
12
13
ascl0
⊢
φ
→
A
⁡
0
Scalar
⁡
W
=
0
W
15
10
14
eqtrd
⊢
φ
→
A
⁡
O
=
0
W
16
15
4
eqtr4di
⊢
φ
→
A
⁡
O
=
0
˙