Metamath Proof Explorer


Theorem mplascl0

Description: The zero scalar as a polynomial. (Contributed by SN, 23-Nov-2024)

Ref Expression
Hypotheses mplascl0.w W = I mPoly R
mplascl0.a A = algSc W
mplascl0.o O = 0 R
mplascl0.0 0 ˙ = 0 W
mplascl0.i φ I V
mplascl0.r φ R Ring
Assertion mplascl0 φ A O = 0 ˙

Proof

Step Hyp Ref Expression
1 mplascl0.w W = I mPoly R
2 mplascl0.a A = algSc W
3 mplascl0.o O = 0 R
4 mplascl0.0 0 ˙ = 0 W
5 mplascl0.i φ I V
6 mplascl0.r φ R Ring
7 1 5 6 mplsca φ R = Scalar W
8 7 fveq2d φ 0 R = 0 Scalar W
9 3 8 eqtrid φ O = 0 Scalar W
10 9 fveq2d φ A O = A 0 Scalar W
11 eqid Scalar W = Scalar W
12 1 5 6 mpllmodd φ W LMod
13 1 5 6 mplringd φ W Ring
14 2 11 12 13 ascl0 φ A 0 Scalar W = 0 W
15 10 14 eqtrd φ A O = 0 W
16 15 4 eqtr4di φ A O = 0 ˙