Metamath Proof Explorer


Theorem mplascl1

Description: The one scalar as a polynomial. (Contributed by SN, 12-Mar-2025)

Ref Expression
Hypotheses mplascl1.w W = I mPoly R
mplascl1.a A = algSc W
mplascl1.o O = 1 R
mplascl1.1 1 ˙ = 1 W
mplascl1.i φ I V
mplascl1.r φ R Ring
Assertion mplascl1 φ A O = 1 ˙

Proof

Step Hyp Ref Expression
1 mplascl1.w W = I mPoly R
2 mplascl1.a A = algSc W
3 mplascl1.o O = 1 R
4 mplascl1.1 1 ˙ = 1 W
5 mplascl1.i φ I V
6 mplascl1.r φ R Ring
7 1 5 6 mplsca φ R = Scalar W
8 7 fveq2d φ 1 R = 1 Scalar W
9 3 8 eqtrid φ O = 1 Scalar W
10 9 fveq2d φ A O = A 1 Scalar W
11 eqid Scalar W = Scalar W
12 1 5 6 mpllmodd φ W LMod
13 1 5 6 mplringd φ W Ring
14 2 11 12 13 ascl1 φ A 1 Scalar W = 1 W
15 10 14 eqtrd φ A O = 1 W
16 15 4 eqtr4di φ A O = 1 ˙