Metamath Proof Explorer


Theorem mplasclf

Description: The scalar injection is a function into the polynomial algebra. (Contributed by Stefan O'Rear, 9-Mar-2015)

Ref Expression
Hypotheses mplasclf.p P=ImPolyR
mplasclf.b B=BaseP
mplasclf.k K=BaseR
mplasclf.a A=algScP
mplasclf.i φIW
mplasclf.r φRRing
Assertion mplasclf φA:KB

Proof

Step Hyp Ref Expression
1 mplasclf.p P=ImPolyR
2 mplasclf.b B=BaseP
3 mplasclf.k K=BaseR
4 mplasclf.a A=algScP
5 mplasclf.i φIW
6 mplasclf.r φRRing
7 eqid ScalarP=ScalarP
8 1 mplring IWRRingPRing
9 1 mpllmod IWRRingPLMod
10 eqid BaseScalarP=BaseScalarP
11 4 7 8 9 10 2 asclf IWRRingA:BaseScalarPB
12 5 6 11 syl2anc φA:BaseScalarPB
13 1 5 6 mplsca φR=ScalarP
14 13 fveq2d φBaseR=BaseScalarP
15 3 14 eqtrid φK=BaseScalarP
16 15 feq2d φA:KBA:BaseScalarPB
17 12 16 mpbird φA:KB