Metamath Proof Explorer


Theorem mplasclf

Description: The scalar injection is a function into the polynomial algebra. (Contributed by Stefan O'Rear, 9-Mar-2015)

Ref Expression
Hypotheses mplasclf.p P = I mPoly R
mplasclf.b B = Base P
mplasclf.k K = Base R
mplasclf.a A = algSc P
mplasclf.i φ I W
mplasclf.r φ R Ring
Assertion mplasclf φ A : K B

Proof

Step Hyp Ref Expression
1 mplasclf.p P = I mPoly R
2 mplasclf.b B = Base P
3 mplasclf.k K = Base R
4 mplasclf.a A = algSc P
5 mplasclf.i φ I W
6 mplasclf.r φ R Ring
7 eqid Scalar P = Scalar P
8 1 mplring I W R Ring P Ring
9 1 mpllmod I W R Ring P LMod
10 eqid Base Scalar P = Base Scalar P
11 4 7 8 9 10 2 asclf I W R Ring A : Base Scalar P B
12 5 6 11 syl2anc φ A : Base Scalar P B
13 1 5 6 mplsca φ R = Scalar P
14 13 fveq2d φ Base R = Base Scalar P
15 3 14 eqtrid φ K = Base Scalar P
16 15 feq2d φ A : K B A : Base Scalar P B
17 12 16 mpbird φ A : K B