Metamath Proof Explorer


Theorem mplassa

Description: The polynomial ring is an associative algebra. (Contributed by Mario Carneiro, 9-Jan-2015)

Ref Expression
Hypothesis mplgrp.p P=ImPolyR
Assertion mplassa IVRCRingPAssAlg

Proof

Step Hyp Ref Expression
1 mplgrp.p P=ImPolyR
2 eqid ImPwSerR=ImPwSerR
3 eqid BaseP=BaseP
4 simpl IVRCRingIV
5 crngring RCRingRRing
6 5 adantl IVRCRingRRing
7 2 1 3 4 6 mplsubrg IVRCRingBasePSubRingImPwSerR
8 2 1 3 4 6 mpllss IVRCRingBasePLSubSpImPwSerR
9 simpr IVRCRingRCRing
10 2 4 9 psrassa IVRCRingImPwSerRAssAlg
11 eqid 1ImPwSerR=1ImPwSerR
12 11 subrg1cl BasePSubRingImPwSerR1ImPwSerRBaseP
13 7 12 syl IVRCRing1ImPwSerRBaseP
14 eqid BaseImPwSerR=BaseImPwSerR
15 14 subrgss BasePSubRingImPwSerRBasePBaseImPwSerR
16 7 15 syl IVRCRingBasePBaseImPwSerR
17 1 2 3 mplval2 P=ImPwSerR𝑠BaseP
18 eqid LSubSpImPwSerR=LSubSpImPwSerR
19 17 18 14 11 issubassa ImPwSerRAssAlg1ImPwSerRBasePBasePBaseImPwSerRPAssAlgBasePSubRingImPwSerRBasePLSubSpImPwSerR
20 10 13 16 19 syl3anc IVRCRingPAssAlgBasePSubRingImPwSerRBasePLSubSpImPwSerR
21 7 8 20 mpbir2and IVRCRingPAssAlg