Metamath Proof Explorer


Theorem mplassa

Description: The polynomial ring is an associative algebra. (Contributed by Mario Carneiro, 9-Jan-2015)

Ref Expression
Hypothesis mplgrp.p P = I mPoly R
Assertion mplassa I V R CRing P AssAlg

Proof

Step Hyp Ref Expression
1 mplgrp.p P = I mPoly R
2 eqid I mPwSer R = I mPwSer R
3 eqid Base P = Base P
4 simpl I V R CRing I V
5 crngring R CRing R Ring
6 5 adantl I V R CRing R Ring
7 2 1 3 4 6 mplsubrg I V R CRing Base P SubRing I mPwSer R
8 2 1 3 4 6 mpllss I V R CRing Base P LSubSp I mPwSer R
9 simpr I V R CRing R CRing
10 2 4 9 psrassa I V R CRing I mPwSer R AssAlg
11 eqid 1 I mPwSer R = 1 I mPwSer R
12 11 subrg1cl Base P SubRing I mPwSer R 1 I mPwSer R Base P
13 7 12 syl I V R CRing 1 I mPwSer R Base P
14 eqid Base I mPwSer R = Base I mPwSer R
15 14 subrgss Base P SubRing I mPwSer R Base P Base I mPwSer R
16 7 15 syl I V R CRing Base P Base I mPwSer R
17 1 2 3 mplval2 P = I mPwSer R 𝑠 Base P
18 eqid LSubSp I mPwSer R = LSubSp I mPwSer R
19 17 18 14 11 issubassa I mPwSer R AssAlg 1 I mPwSer R Base P Base P Base I mPwSer R P AssAlg Base P SubRing I mPwSer R Base P LSubSp I mPwSer R
20 10 13 16 19 syl3anc I V R CRing P AssAlg Base P SubRing I mPwSer R Base P LSubSp I mPwSer R
21 7 8 20 mpbir2and I V R CRing P AssAlg