Metamath Proof Explorer


Theorem mplbas

Description: Base set of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015) (Revised by AV, 25-Jun-2019)

Ref Expression
Hypotheses mplval.p P = I mPoly R
mplval.s S = I mPwSer R
mplval.b B = Base S
mplval.z 0 ˙ = 0 R
mplbas.u U = Base P
Assertion mplbas U = f B | finSupp 0 ˙ f

Proof

Step Hyp Ref Expression
1 mplval.p P = I mPoly R
2 mplval.s S = I mPwSer R
3 mplval.b B = Base S
4 mplval.z 0 ˙ = 0 R
5 mplbas.u U = Base P
6 ssrab2 f B | finSupp 0 ˙ f B
7 eqid f B | finSupp 0 ˙ f = f B | finSupp 0 ˙ f
8 1 2 3 4 7 mplval P = S 𝑠 f B | finSupp 0 ˙ f
9 8 3 ressbas2 f B | finSupp 0 ˙ f B f B | finSupp 0 ˙ f = Base P
10 6 9 ax-mp f B | finSupp 0 ˙ f = Base P
11 5 10 eqtr4i U = f B | finSupp 0 ˙ f